Effect of Processing Techniques and Storage on Water Melon (Citrullus lanatus Thunb.) Seeds

MINI, C., KRISHNAKUMARY, K. AND GOPALAKRISHNAN, T.R.

College of Horticulture, Kerala Agricultural University, Vellanikkara, Trichur, Kerala-680 656

ABSTRACT An investigation, to standardise the ideal seed extraction method for optimum seed quality in water melon cv. Sugar Baby, was undertaken at the Department of Olericulture, College of Horticulture, Vellanikkara. Seeds extracted after soaking the fruit pulp in 1% HCl for 30 minutes followed by drying the seeds initially in shade for one day and then in sun, avoiding peak hours showed maximum germination per cent (99.5), speed of germination (24.9) and vigour index (1086). Storage study revealed that open storage cannot be recommended for watermelon seeds.

Keywords: water melon, seed processing techniques, storage

The extraction of seeds from fleshy fruits like watermelon is cumbersome since seeds are embedded in the pithy placenta. In such cases the common practice is to scoop out the seeds manually along with placenta and to clean the seeds by repeated washing. Very little information is available on the seed extraction aspects of fleshy-fruited vegetables. Hence an investigation was undertaken at the Department of Olericulture, College of Horticulture, Vellanikkara to standardize the seed extraction and drying methods and to study the effect of storage on seed quality.

MATERIALS AND METHODS

Seeds were extracted from fully matured fruits of uniform size of watermelon cv. Sugar Baby by seven different methods, viz., E_1 -Manual extraction, without fermentation, E_2 -Manual extraction with fermentation for 48 h, E_3 -Machine extraction with fermentation for 48 h, E_5 -Manual extraction with fermentation for 48 h, E_5 -Manual extraction with 1%HCl treatment for 30 minutes (w/w basis), E_6 -Manual extraction with 2%HCl treatment for 30 minutes (w/w basis) and E_7 -Manual extraction with 1% NaOH solution equal to the weight of pulp for one night.

The seeds obtained from each method were subjected to the following four different drying methods till the moisture content reached 7%.

Different drying treatments include D_1 -Drying under shade, D_2 -Drying in direct sunlight, D_3 -Drying in hot air oven at 35°C and D_4 -Initial drying in shade for one day and then in sun, avoiding peak hours (12 noon to 3 pm.)

Thus the total number of treatments were 28 with 2 replications. The processed seeds were stored under ordinary room temperature for one year and quality parameters like germination percent, speed of germination and vigour index were tested at monthly intervals.

The mean number of normal seedlings produced was recorded on 10th day and expressed as germination per cent. Vigour index was computed by adopting the formula [1] and expressed as whole number.

Vigour index = germination per cent \times mean length of root and shoot (cm).

Speed of germination was calculated using the following formula.

Speed of germination =
$$\frac{X1}{Y1} + \frac{X2-X1}{Y2} + - - \frac{Xn-X(n-1)}{Yn}$$

Where Xn is the percentage germination on nth day and Yn is the number of days from sowing.

Statistical analysis of the data was carried out using standard package MSTATC in CRD.

Table 1. Effect of extraction method on seed quality of watermelon

Treatments			Seed quality para	Seed quality parameters		
Extraction method	od	Drying method	Germination (%)	Speed germination	Vigour index	
Manual	villabil so	Shade	91.7	3.7	558	
		Sun	69.4	1.1	276	
		Oven	67.7	2.9	452	
		Shade (1d)+Sun	99.0	5.2	786	
					germination w	
Manual+		Shade	97.5	18.5	943	
Fermentation		Sun	87.5	18.2	802	
		Oven	81.0	16.7	819	
		Shade (1d)+Sun	97.5	20.2	1010	
		2. Effect of storage on see	92.7	4.4	774	
Machine		Shade	62.4	3.4	598	
		Sun	44.2	5.0	301	
		Oven Shade (1d)+Sun	80.2	8.95	932	
					HOW ME AND	
Machine+		Shade	94.2	22.1	851	
Fermentation		Sun	87.9	15.8	738	
		Oven	94.2	16.5	690	
		Shade (1d)+Sun	86.4	21.1	677	
				d shorts in allesticity and	861	
Manual+		Shade	97.5	24.5	798	
1% HCl		Sun	92.5	18.3	792	
		Oven	87.5	20.9	1086	
		Shade (1d)+Sun	99.5	24.9	1000	
Manual+		Shade	94.2	11.2	743	
2% HCl		Sun	26.9	8.0	140	
2/0 1101	of A march	Oven	66.7	11.6	470	
		Shade (1d)+Sun	81.2	20.3	666	
		action of 60%.	04.0	21.6	790	
Manual+		Shade	86.9	21.4	858	
1% NaOH		Sun	85.4		772	
		Oven	85.5	18.1	934	
		Shade (1d)+Sun	98.5	24.1		
		CD (P=0.05)	23.1	6.1	206.2	

RESULTS AND DISCUSSION

Effect of extraction method on seed quality of watermelon is shown in Table 1. The maximum germination of 99.5 per cent was recorded in seeds,

which were manually extracted using 1% HCl for 30 minutes and dried initially in shade for one day and then in sun, avoiding peak hours. This was on par with the seeds which were extracted manually with fermentation, manually using 1% NaOH and

dried in the same way. The lowest germination of 26.9 was noted in seeds that were extracted using 2% HCl, followed by drying in direct sunlight.

The highest speed of germination (24.9) was recorded in seeds, which were manually extracted using 1% HCl and dried initially in shade for one day and then in sun, avoiding peak hours. Seeds extracted in the same way and dried under shade or in oven also showed superior values. The speed of germination was lowest for all the seeds extracted manually or mechanically without fermentation, irrespective of drying methods.

The highest vigour index of 1086 was recorded in seeds, which were manually extracted using 1% HCl for 30 minutes followed by drying initially in shade for one day and then in sun, avoiding peak hours. This was on par with the seeds that were extracted manually with fermentation, followed by drying in shade or dried in shade for one day and then in sun avoiding peak hours. Seed extracted in machine without fermentation or extracted manually using 1% NaOH, followed by drying initially in shade for one day and then in sun, avoiding peak hours performed similarly. The vigour index was lowest (140) for seeds extracted using 2% HCl and dried under direct sunlight.

Seeds extracted using 1% HCl for 30 minutes followed by drying initially in shade for one day and then in sun, avoiding peak hours showed maximum germination per cent (99.5), speed of germination (24.9) and vigour index (1086). Seeds extracted manually with fermentation for 48 hours or using 1% NaOH and dried initially in shade for one day and then in sun avoiding peak hours also showed superior values for germination, speed of germination and vigour index. Manual extraction with fermentation for 48 hours is the farmers' practice of seed extraction in Kerala, which is time consuming. Treatment with 2% HCl was inferior, producing poor quality seeds compared to 1% HCl. High concentration may be injurious to seeds thus resulting in poor quality. Manual extraction using 1% NaOH was better resulting in good quality seeds. The superiority of alkali in washing seeds of fleshy fruited vegetables had been reported earlier (2). Extraction using 1% HCl was very fast compared to these two methods. Many workers have reported superiority of acid method of seed extraction in improving the germination and vigour of the seeds [3,4,5]. The acidity might have destroyed or neutralized some of the germination inhibiting factors present around the seed. Treatment with concentrated HCl also detaches the seeds quickly

from the adhering pulp. In all these treatments, better performance was obtained when the seeds were initially dried in shade for one day and then in sun, avoiding peak hours. Oven drying and sun drying always resulted in poor quality seeds. The superiority of combined sun and shade drying had been reported in tomato seed germination. Better performance of shade drying avoiding peak hours could be due to the slow drying procedure without exposure to continuous radiation effects.

The processed seeds were subjected to a storage study for the period of 9 months and the mean values of germination (%), speed of germination & vigour index are presented in Table 2.

Table 2. Effect of storage on seed quality

Months after storage	Germination (%)	Speed of germination	Vigour index
1	83.4	24.6	726
2	69.9	17.7	552
3	70.1	13.7	539
4	48.3	12.9	360
5	48.1	12.7	315
6	24.2	8.5	160
7	22.1	6.0	141
8	21.8	5.9	127
9	28.5	5.8	119
CD	6.6	2.88	77.2

Seed quality parameters disastically reduced during storage. Germination per cent reduced from 83.4 after one month, to 28.5 by 9 months of storage. By fourth months, germination per cent reduced to 48.3, which is below the required minimum germination of 60%.

Similar to germination percent, speed of germination and vigour index also reduced due to storage. Speed reduced from 24.6 at one month after storage to 5.8 at 9 month. Vigour index reduced from 726 at one month after storage to 119 at 9 months of storage.

Though the study was planned for a period of one year, the watermelon seeds did not germinate after 9 months of storage.

From the study, it is evident that watermelon seeds cannot be stored under ordinary room temperature, as it resulted in poor quality seeds by the 4th month of storage.

REFERENCES

- 1. ABDUL-BAKI, A.A. & J.D ANDERSON (1970). Viability and leaching of sugars from germinating barley crop. *Crop Sci.* **10**: 31-34.
- KOLEV, E. & K.H. BOYADZHEV (1983). Possibilities of washing seeds of fleshy fruited vegetables with chemicals. Gradinarska I Lozarska Nanka, 20(2): 44-49.
- 3. GILL, S. S. & H. SINGH (1987). Effect of fermentation and acid treatments on seed extraction of tomato. *Punjab. Agric. Univ. J. Res.*, 24: 585-589.
- 4. KANNATH, B. (1996). Effect of fruit maturity, seed processing and storage methods on seed quality of ash gourd (*Benincasa hispida*-Thunb.) M.Sc. (Hort.) thesis, Kerala Agricultural University, Vellanikkara.
- MINI, C., M. JOSEPH & P.G. SADHANKUMAR (2003). Standardization of seed processing techniques in ash gourd (Benincasa hispida Thunb.). Seed Res. 31(1): 53-57.