Effect of Sarocladium oryzae and Fusarium moniliforme on Seed Quality of Parental Lines of Hybrid Rice during Storage

RAJBIR SINGH AND KARUNA VISHUNAVAT

Centre of Advanced Studies in Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar-263 145

To break the plateau in rice yield, research and development efforts were accelerated on hybrid rice in India, during the last decade. These efforts have lead to the identification of more than 10 heterotic combinations of CMS and restorer lines which are being cultivated throughout India, majority of them in southern part of the country. However, CMS lines of rice are known to be highly susceptible to number of diseases, including seedborne pathogens. The present investigation, therefore, was conducted to compare and study the effect of two very important pathogens (*S. oryzae* and *F. moniliforme*) of rice on the seed quality during storage.

During crop surveys in 1999-2000, seed samples of CMS line (IR 58025A), maintainer (IR 58025B), restorers (IR 66 and KMR 3) and a conventional variety (Pant Dhan-11) were collected showing varying degree of infection. Collected seeds were dried in shade and then sealed in polythen bags (700 gauze) for further studies in storage.

On the basis of visual observations seeds were categorized as healthy and discoloured seeds. Healthy and discolured seeds were examined for seedborne pathogens using blotter test and agar plate test as per ISTA rules [1]. Seed quality parameters such as seed weight, seed density, seed volume and seed viability were assessed in both the categories of seed. Seed viability was estimated using tetrazolium test as suggested by Grabe [1]. Seed germination was estimated using towel paper method [2].

Discoloured seed on visual observation appeared ashy brown in colour. The maximum seed infection of S. oryzae and F. moniliforme was recorded in CMS (IR 58025A) followed by maintainer (IR 58025 B) at different storage intervals. Restorer lines, KMR 3 had the least infection (Table 1). Auto elimination of these pathogens occurred with the advancement of the storage. In blotter test, the per cent seed infection of both the fungi was higher as compared to agar plate method indicating superiority of this method over agar plate method. In addition to S. oryzae and F. moniliforme, Helminthosporium oryzae, Curvularia lunata and Colletotrichum spp. were also observed in lower proportion. The trend for loss in seed weight, volume, density and viability was also influenced by seed health and was directly proportional to the health of different genotypes (Table 2 and 3). Similar findings have been reported by other workers [3-7].

REFERENCES

- GRABE, D.F. (1967). Low seed vigour: Hidden threat to crop yield. Crops and Soil, 19: 11-13.
- INTERNATIONAL SEED TESTING ASSOCIATION (1999). International rules for seed testing. Seed Sci. & Technol., 27, Supplement 333pp.
- 3. CHENG, L.B. (1993). Study of vigour of hybrid rice, *Acta Scienharum Nalaraliym Universitalis Hormalis Hunanensi*, **16**: 3.
- DUAN, X.M. & H.S. MA (1992). Effect of foliar spray of gibberellic acid on seed quality of hybrid rice. Seed Sci. & Technol., 20: 209-214.

Table 1. Per cent infection of S. oryzae and F. moniliforme at different storage period

	late	ботие	4.25	3.00	1.00	0.00	2.00	1.92
	Agar plate method	S. F. oryzae moniliforme	0.0	0.0	0.0	0.0	0.0	0.0
May		AT COL	6.50	5.25 (2.0 (0.0	3.0 0	1.58
M	Blotter method	F. moniliforme						Belle
	Blott	S. oryzae	0.0	0.0	0.0	0.0	0.0	0.0
	Agar plate method	E. miliforme	8.50	6.0	2.0	0.0	3.0	2.90
1	Agar	S. F. oryzae moniliforme	1.0	1.0	0.0	0.0	0.0	4.57
April	nethod	E, moniliforme	8.50	00.9	2.00	0.00	3.00	1.25
	Blotter method	S. oryzae	3.00	1.00	00.00	00.00	0.00	2.24
	Agar plate method	E. moniliforme	10.25	7.00	2.00	0.00	7.00	1.06
rch	Agar	S. oryzae m	3.00	2.50	1.00	0.00	0.50	2.05
March	nethod	F. moniliforme	16.0	10.0	4.0	1.0	8.0	4.48
	Blotter method	S. oryzae me	2.00	4.50	2.50	0.00	1.00	2.38
	plate	F. moniliforme	12.0	11.50	7.50	1.0	0.6	2.24
uary	Agar plate method	S. oryzae mo	4.0	3.0	3.0	0.0	1.0	0.85
February	Blotter method	F. moniliforme	17.0	15.5	0.6	4.0	10.0	5.98
	Blotter	S. orryzae m	8.0	7.0	4.0	0.0	2.0	4.46
	plate	F. omiliforme	16.50	7.75 14.25	9.25	3.0	10.25	2.11
ry	Agar plat method	S. F. oryzae moniliforme	10.50 16.50	7.75	5.0	0.0	3.0	6.23 2.82 2.11
January	Blotter method Agar plate method	F. moniliforme	20.0	18.0	11.0	0.9	12.0	
	Blotter	S. oryzae m	13.50	12.00	00.9	0.00	3.00	5.08
	Genotype		CMS 58025A 13.50	CMS 58025B	IR-66	KMR-3	Pant Dhan-11	CD at 5%

Table 2. Effect of S. oryzae and F. moniliforme on seed quality parameters in different genotypes of rice

Genotype	Thousand seed weight (g)	d weight (g)	Seed Volume o	Seed Volume of 100-seed (ml)		Density of 100-seed	100-seed	
	Healthy seeds	Infected seeds	Healthy seeds	Infected seeds	Healt	Healthy seeds	Infecte	Infected seeds
			tool burn		Flotted seeds	Sunken seeds	Flotted seeds	Sunken seeds
CMS 58025A	20.82	17.20	1.57	1.03	18.00	82.00	30.33	29.69
CMS 58025B	19.82	16.80	1.50	1.06	18.33	81.67	31.00	00.69
IR-66	21.05	20.75	2.13	2.00	8.67	91.33	14.67	85.33
KMR-3	20.07	20.00	2.03	1.90	7.00	93.00	11.33	88.67
Pant Dhan-11	21.24	20.50	2.13	2.06	8.67	91.33	14.67	85.33
CD at 5%	0.29		0.18	0.16	0.77	0.77	1.32	1.32

Table 3. Effect of S. oryzae and F. moniliforme on pre-and post-emergence health of seed at different storage periods

Genotypes	Normal seedlings					Seed rot					
	January	February	March	April	May	January	February	March	April	May	
CMS 58025A	67.92	66.04	63.96	61.33	59.71	3.33	4.38	5.58	6.00	7.36	
CMS 58025B	68.79	66.45	64.96	63.17	61.55	2.71	3.46	4.21	5.63	6.00	
IR-66	82.54	80.79	78.83	76.75	74.54	0.00	0.33	0.75	0.83	1.71	
KMR-3	84.79	82.45	80.79	78.96	76.21	0.00	0.54	0.88	0.93	0.93	
Pant Dhan-11	82.36	80.33	78.86	77.17	74.38	0.33	0.96	1.21	1.29	2.10	
CD at 5%	1.57	1.42	1.30	1.45	0.96	1.65	1.32	1.79	1.52	2.09	

- 5. REDDY, M.M. & C.S. REDDY (2000). Effect of sheath rot disease on yield attributes and grain yield of rice. *J. Mycol. Pl Pathol*, **30**: 68-72.
- REDDY, T.A., P.C. GUPTA & P.K. AGARWAL (1975). Effect of variety, storage temperature and seed treatment
- on loss of viability in rice seed during storage. *Bull. Grain Tech.*, XIII, 2: 78-82.
- 7. TIKKO, M.L. (1985). Effect of sheath rot (*Acrocylindruim oryzae*) on some yield components of rice. *Res. Devel. Rep.*, 2: 24-25.