Cloning and characterization of nutrient deficiency and salinity stress responsive TaCBL4 gene from bread wheat (Triticum aestivum L.)


105

Authors

  • s Lekshmy Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012
  • S K Jha Division of Genetics, ICAR-IARI, New Delhi - 110 012
  • V Chinnusamy Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012
  • R K Sairam Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012

Abstract

Environmental stresses, such as drought, salinity, extreme temperatures and nutrient deficiencies affect plant productivity adversely. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are components of calcium mediated stress response pathways in many plants. In the present study, TaCBL4 gene homologous to salt stress responsive Arabidopsis CBL4 (AtSOS3) was cloned from wheat and sequence characterized. The predicted protein of TaCBL4 showed 95, 83, 70 and 61% similarity with amino acid sequences of barley, rice, maize and Arabidopsis CBL4, respectively, demonstrating that CBL4 genes are conserved between dicots and monocots. TaCBL4 protein consists of three EF-hand calcium binding motifs, a characteristic feature of calcium sensor proteins. The modelled image of TaCBL4 protein was highly identical to the already resolved structure of the AtCBL4 protein. In addition to salinity stress, the expression of TaCBL4 gene was also up-regulated by deficiency of major nutrients, namely, nitrogen, phosphorus and potassium. This suggests that TaCBL4 may serve as node for signaling crosstalk between salinity and nutrient deficiency stress signaling pathways and nutrient homeostasis under salinity stress. The present study lays foundation for functional studies on role of TaCBL4 gene in nutrient use efficiency and for its further utilization in breeding new wheat varieties with enhanced nutrient use efficiency and salinity tolerance.

Author Biographies

  • s Lekshmy, Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012
    Division of Plant Physiology,
  • S K Jha, Division of Genetics, ICAR-IARI, New Delhi - 110 012

    Division of Genetics,

  • V Chinnusamy, Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012
    Division of Plant Physiology
  • R K Sairam, Division of Plant Physiology, ICAR-IARI, New Delhi - 110 012
    Division of Plant Physiology

References

Batistic O. and Kudla J. 2004. Integration and channeling of calcium signaling through the CBL calcium sensor/ CIPK protein kinase network. Planta, 2196: 915-924.

Chen L., Ren F., Zhou L., Wang Q. Q., Zhon, H. and Li X. B. 2012. The Brassica napus calcineurin B-Like 1/ CBL-interacting protein kinase 6 CBL1/CIPK6 component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot., 6317: 62116222.

Clamp M., Cuff J., Searle S. M. and BartonG. J. 2004. The Jalview Java alignment editor. Bioinformatics, 20: 426-427.

Deng X., Hu W., Wei S., Zhou S., Zhang F., Han J., Chen L., Li Y., Feng J., Fang B., Luo Q., Li S., Liu Y., Yang G. and He G. 2013. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One, 8: e69881

Deng X., Zhou S., Hu W., Feng J., Zhang F., Chen L., Huang C., Luo Q., He Y., Yang G. and He G. 2013. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol. Plant., 149: 367-377.

Dodd A. N., Kudla J. and Sanders D. 2010. The language of calcium signaling. Annu. Rev. Plant. Biol., 61: 593620.

Dong L., Wang Q., Manik S. M. N., Song Y., Shi S., Su Y., Liu G. and Liu H. 2015. Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep., 34(12): 2053-2063.

Gu Z., Ma B., Jiang Y., Chen Z., Su X. and Zhang H. 2008. Expression analysis of the calcineurin B-like gene family in rice Oryza sativa L. under environmental stresses. Gene, 4151: 1-12.

Ikeda Y., Koizumi N., Kusano T. and Sano H. 1999. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol., 121(3): 813-820.

Kolukisaoglu Ü., Weinl S., Blazevic D., Batistic O. and

Kudl, J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol., 1341:43-58.

Kudla J., Xu Q., Harter K., Gruissem W. and Luan S. 1999. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA, 96: 4718-4723.

Kushwaha H. R., Kumar G., Verma P. K., Singla-Pareek S. L. and Pareek A. 2011. Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiol. Biochem., 499: 9961004.

Lekshmy S., Sairam R. K., Chinnusamy V. and Jha S. K. 2015. Differential transcript abundance of salt overly sensitive SOS pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol. Plant, 378: 1-10.

Li Z. Y., Xu Z. S., He G. Y., Yang G.X., Chen M., Li L. C. and Ma Y. Z. 2012. Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem Biophys. Res. Commun., 427: 731-736

Liu J., Ishitani M., Halfter U., Kim C. S. and Zhu J. K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Nat. Acad. Sci., 977: 3730-3734.

Liu L. L., Ren H. M., Chen L. Q., Wang Y. and Wu W. H. 2013. A protein kinase, calcineurin B-like proteininteracting protein kinase 9, interacts with calcium sensor calcineurin B-like protein 3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol., 1611: 266-277.

Livak K. J. and Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -Delta Delta C T method. Methods, 25: 402-408.

Luan S., Kudla J., Rodriguez-Concepcion M., Yalovsky S. and Gruissem W. 2002. Calmodulins and calcineurin B-like proteins calcium sensors for specific signal response coupling in plants. The Plant Cell, 14: S389S400.

Luan, S. 2009. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci., 141: 37-42.

Martínez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J. K, Pardo J. M. and Quintero F. J. 2007. Conservation of the salt overly sensitive pathway in rice, Plant Physiol., 143: 1001-1012.

Pandey G. K., Cheong H.Y., Kim K.N., Grant J.J, Li L., Hung W., D’Angelo C., Weinl S., Kudla J. and Luan S. 2004. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell., 16: 1912-1924.

S. Lekshmy et al. [Vol. 76, No. 2

Qiu Q. S., Guo Y., Dietrich M. A., Schumaker K. S. and Zhu J. K. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Nati. Acad. Sci., 9912: 8436-8441.

Ren X. L., Qi G.N., Feng H. Q., Zha, S., Zha, S. S., Wan, Y. and Wu, W. H. 2013. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. The Plant J., 742: 258266.

Rivandi, J., Miyazaki, J., Hrmova, M., Pallotta, M., Tester, M. and Collins, N.C. 2011. A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J. Exp Bot, 62(3): 1201-1216.

Sanchez-Barrena M. J.,Ripoll M. M, Zhu J. K. and Albert A. 2005. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J. Mol. Biol., 345: 1253-1264.

Steinhorst L. and Kudla J. 2013. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol., 163: 471-485.

Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 27252729.

Tang R. J., Li H., Yan Y., Yan L., Ga X. S., Garcia V. J. and Zhan H. X. 2012. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis.

Cell Res., 2212: 1650-1665.

Wang C., Yuan Z., Li S., Wang W., Xue R. and Ta F. 2014. Characterization of eight CBL genes expressions in maize early seeding development. Acta. Physiol. Plant, 201436: 3307-3314.

Wang M., Gu D., Liu T., Wang Z., Guo X., Hou W., Bai Y., Chen X. and Wang G. 2007. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol. Biol., 65(6): 733-746.

Xu J., Li H. D., Chen L. Q., Wang Y., Liu L. L., He L. and Wu W. H. 2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 1257: 1347-1360.

Yang Q., Chen Z. Z., Zhou X. F., Yin H. B., Li X., Xin X. F., Hong X. H., Zhu J. K. and Gong Z. 2009. Overexpression of SOS Salt Overly Sensitive genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant, 2: 22-31.

Zhang H., Yang B., Liu W. Z., Li H., Wang L., Wang B., Deng M., Liang W., Deyholos M. K. and Jiang Y. Q. 2014. Identification and characterization of CBL and CIPK gene families in canola Brassica napus L. BMC Plant Biol., 14: 8.

Zhao J., Sun Z., Zheng J., Guo X., Dong Z., Huai J. and Gou M. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol., 69: 661-674.

How to Cite

Lekshmy, s, Jha, S. K., Chinnusamy, V., & Sairam, R. K. (2016). Cloning and characterization of nutrient deficiency and salinity stress responsive TaCBL4 gene from bread wheat (Triticum aestivum L.). The Indian Journal of Genetics and Plant Breeding, 76(2). https://epubs.icar.org.in/index.php/IJGPB/article/view/60631