Isolation of Lactobacilli from Malabari Goat Milk Samples and Assessment of their Techno-Functional Attributes for use as Functional Starter Cultures
150 / 64
Keywords:
Malabari goat milk, Lactiplantibacillus plantarum, Functional starter culturesAbstract
The objective of this study was to isolate lactobacilli from raw goat milk samples and characterize them in terms of their techno-functional attributes. Out of the eleven distinct colonies obtained on pour plating five individual goat milk samples three isolates were tentatively identified as lactobacilli cultures. Through 16S rRNA sequencing these isolates were identified as Lactiplantibacillus plantarum DMAG02, Lactiplantibacillus plantarum DMAG03, and Lactiplantibacillus plantarum DMA11, and their partial 16S rRNA sequences were deposited in NCBI with accession nos: OR105028, OR105041 and OR905856. In-vitro studies revealed the antimicrobial activity of these Lactiplantibacillus plantarum strains towards Staphylococcus aureus. Out of the isolates, DMA11 alone was found to be citrate fermenting and positive for Voges Proskauer and methyl red reaction. All the isolates showed proteolytic activity, while none of them exhibited lipolytic activity and exopolysaccharide production. Out of three isolates, DMA11 exhibited the highest cell surface hydrophobicity (93.34%), auto aggregation (88.5%), and DPPH scavenging activity (31.33%). In the case of antibiotic susceptibility, all three isolates exhibited sensitivity against three (Azythromycin, Tetracycline, and Clindamycin) out of the seven tested antibiotics. The safety assessment tests revealed that all the isolates are non-virulent. In light of the safety features, functional qualities, and technological traits of the isolated Lactiplantibacillus strains, they hold promise for usage as functional dairy starter cultures.
Downloads
References
AlKalbani, N.S., Turner, M.S. and Ayyash, M.M. (2019). Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microb. Cell. Fact. 18, 188 .https://doi.org/10.1186/s12934-019-1239-1
Alp, D. and KuleaŞan, H. (2020). Determination of competition and adhesion abilities of lactic acid bacteria against gut pathogens in a whole-tissue model. BMFH.39:250–258.
Amenu D. and Bacha K. (2023). Probiotic potential and safety analysis of lactic acid bacteria isolated from Ethiopian traditional fermented foods and beverages. Ann.Microbiol. 73:37 .https://doi.org/10.1186/s13213-023-01740-9
Amrutha, T.A., Beena, A.K., Sudhakaran A.V., Rejeesh, R., Archana, C. and Vinod, V. (2019). Antioxidant property of Weissellacibaria DMA 18 isolated from tender coconut water. Pharma Innov. J. 8: 1-6
Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., and Ibrahim, S. A. (2020). Lactic acid Bacteria: Food safety and human health Applications. Dairy.1: 202–232. https://doi.org/10.3390/dairy1030015
Balouiri, M., Sadiki, M. and Ibnsouda, S.K. (2016). Methods for _in vitro_ evaluating antimicrobial activity: a review,” J.Pharm. Anal. 6: 71–79.
Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turck. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 36: 493-496.
Bhagwat, A. and Annapure, U. S. (2019). In vitro assessment of metabolic profile of Enterococcus strains of human origin. J. Genet. Eng. Biotechnol. 17 : 11. https://doi.org/10.1186/s43141-019-0009-0
Byakika, S., Mukisa, I. M., Mugabi, R. and Muyanja, C. (2019). Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially VirulentE. coliIsolated from a Fermented Sorghum-Millet Beverage. Int. J. Microbiol.: 1–10.
Chen, J., Pang, H., Wang, L., Ma, C., Wu, G., Liu, Y., Guan, Y., Zhang, M., Qin, G. and Tan, Z. (2022). Bacteriocin-Producing Lactic Acid Bacteria Strains with Antimicrobial Activity Screened from Bamei Pig Feces. Foods. 11 : 709. https://doi.org/10.3390/foods11050709
Collado, M.C., Meriluoto, J. and Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 226: 1065–1073
Collins, C.M. and D'Orazio, S.E. (1993) Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 9 : 907-913.
da Silva Ferrari, I., de Souza, J. V., Ramos, C. L., da Costa, M. M., Schwan, R. F. and Dias, F. S. (2016). Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese. Food microbiol. 60 : 29-38.
de Almeida Júnior, W. L. G., da Silva Ferrari, Í., de Souza, J. V., da Silva, C. D. A., da Costa, M. M. and Dias, F. S. (2015). Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food control. 53 : 96-103.
De Amorim Trindade, D. P., Barbosa, J. P., Martins, E. M. F. and Tette, P. A. S. (2022). Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential. Food Biosci.48 : 101739. https://doi.org/10.1016/j.fbio.2022.101739
Erginkaya, Z., Turhan, E. U. and Tatlı, D. (2018). Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iran. J. Vet. Res. 19 : 53–56.
FAO/WHO (2006) Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation. FAO Food and Nutritional, Paper No. 85.
Freeman, D.J., Falkiner, F.R. and Keane, C.T. (1989). New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 42 : 872-874.
García-Cayuela, T., Korany, A.M., Bustos, I., Gómez de Cadiñanos, L.P., Requena, T., and Peláez,C. (2014). Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. Int. 57: 44–50.
Gheziel, C., Russo, P., Arena, M. P., Spano, G., Ouzari, H., Khéroua, O. and Capozzi, V.(2019). Evaluating the Probiotic Potential of Lactobacillus plantarum Strains from Algerian Infant Feces: Towards the Design of Probiotic Starter Cultures Tailored for Developing Countries. Probiotics Antimicro. 11 : 113–123.
Haghshenas, B., Nami, Y., Almasi, A., Abdullah, N., Radiah, D., Rosli, R., Barzegari, A. and Khosroushahi, A. Y.(2017). Isolation and characterization of probiotics from dairies. Iran.J.microbiol. 9(4) : 234–243.
Hammad, I. A., Talkhan, F. N. and Zoheir, A. E. (2013). Urease activity and induction of calcium carbonate precipitation by Sporosarcinapasteurii NCIMB 8841. J.Appl. Sci. Res. 9 :1525-1533.
Harrigan W. F. and McCance M. E. (1976) Laboratory Methods in Food and Dairy Microbiology. London, UK: Academic Press
Hernandez-Valdes, J. A., Solopova, A. and Kuipers, O. P. (2020). Development of Lactococcus lactis Biosensors for Detection of Diacetyl. Front. Microbiol. 11 . https://doi.org/10.3389/fmicb.2020.01022
Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology. Edn. 9. Williams and Wilkins, Baltimore, MS, USA
Horrall, B.E. and Elliker, P.R. (1950) An activity test for cheddar and cottage cheese starters. J. Dairy Sci.33 :245-249
Islam, M. Z., Uddin, M. E., Rahman, M. T., Islam, M. A. and Harun-Ur-Rashid, M. (2021). Isolation and characterization of dominant lactic acid bacteria from raw goat milk: Assessment of probiotic potential and technological properties. Small Rumin. Res. 205: 106532. https://doi.org/10.1016/j.smallrumres.2021.106532
Kachouri, F., Ksontini, H., Kraiem, M., Setti, K., Mechmeche, M. and Hamdi, M. (2015). Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol.52: 7924–7933.
Kempler, G.M. and McKay, L.L. (1980) Improved medium for detection of citrate-fermenting Streptococcus lactis subsp. diacetylactis.Appl., Environ Microbiol. 39:926-7. doi: 10.1128/aem.39.4.926-927.1980.
Khan, I. and Kang, S. C. (2016). Probiotic potential of nutritionally improved Lactobacillus plantarum DGK-17 isolated from Kimchi – A traditional Korean fermented food. Food Control. 60: 88–94.
Kieliszek, M., Pobiega, K., Piwowarek, K. and Kot, A. M. (2021). Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules.26: 1858. https://doi.org/10.3390/molecules26071858
Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. and Matosic, S. (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M29. J. Appl. Microbiol.94: 981–987.
Łepecka, A., Szymański, P., Okoń, A. and Zielińska, D. (2023). Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT.174: 114440. https://doi.org/10.1016/j.lwt.2023.114440
Linares D.M., Gómez C., Renes E., Fresno-Baro J.M., Tornadijo M.E., Ross R.P. and Stanton C.(2017). Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front. Microbiol. 8:846. doi: 10.3389/fmicb.2017.00846
Luan, X., Feng, M. and Sun, J. (2021). Effect of Lactobacillus plantarum on antioxidant activity in fermented sausage. Food Res. Int. 144: 110251. https://doi.org/10.1016/j.foodres.2021.110251
Manzoor, A., Ul-Haq, I., Baig, S., Qazi, J. I. and Seratlic, S. (2016). Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens. Jundishapur J.microbiol. 9: e18952. https://doi.org/10.5812/jjm.18952
Masood, M.I., Qadir, M.I., Shirazi, J.H. and Khan, I.U.(2011) Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol.37:91-98.
Mathur, H., Beresford, T. P. and Cotter, P. D. (2020). Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients. 12: 1679. https://doi.org/10.3390/nu12061679
Monfredini, L. U. C. A., Settanni, L., Poznanski, E., Cavazza, A. and Franciosi, E. (2012). The spatial distribution of bacteria in Grana-cheese during ripening. Syst.Appl.Microbiol. 35: 54-63.
Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Miller BC, and Xu J. (2011). Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 62:1081–1089.
Phang, I. R., Chan, Y. S., Wong, K. S. and Lau, S. Y. (2018). Isolation and characterization of urease-producing bacteria from tropical peat. Biocatal. Agric. Biotechnol . 13: 168–175.
Pradhan, D. and Singh,R . (2017). Isolation and characterization of predominant Lactococci from ‘O’ type mixed strain starters. Indian J. Dairy Sci. 70:726-733
Rezaee, P., Kermanshahi, R. K. and Falsafi, T. (2019). Antibacterial activity of lactobacilli probiotics on clinical strains of Helicobacter pylori. Iran. J. Basic Med. Sci.22: 1118–1124.
Rossi, F., Di Renzo, T., Preziuso, M., Zotta, T., Iacumin, L., Coppola, R. and Reale, A. (2014). Survey of antibiotic resistance traits in strains of Lactobacillus casei/paracasei/rhamnosus. Ann. Microbiol.65: 1763–1769.
Saliba, L., Ζουμποπούλου, Γ., Anastasiou, R., Hassoun, G., Karayiannis, Y., Sgouras, D. N., Tsakalidou, E., Deiana, P., Montanari, L. and Mangia, N. P. (2021). Probiotic and safety assessment of Lactobacillus strains isolated from Lebanese Baladi goat milk. Int. Dairy J. 120: 105092. https://doi.org/10.1016/j.idairyj.2021.105092
Selis, N. D. N., Oliveira, H. C., Leão, H. F., Anjos, Y. B. D., Sampaio, B. A., Correia, T. M. L., Almeida, C. F., Pena, L. S. C., Reis, M. M., Brito, T. L. S., Brito, L. F., Campos, G. B., Timenetsky, J., Cruz, M. J. M., Rezende, R. P., Romano, C. C., Da Costa, A. M., Yatsuda, R., Uetanabaro, A. P. T. and Marques, L. M. (2021). Lactiplantibacillus plantarum strains isolated from spontaneously fermented cocoa exhibit potential probiotic properties against Gardnerella vaginalis and Neisseria gonorrhoeae.BMC Microbiol. 21. https://doi.org/10.1186/s12866-021-02264-5
Shanmugaraj , Archana and Kalia, V. (2021). Fermentation Pathway by Methyl Red and Voges Proskauer (MRVP) Test.AgriCos e-Newsletter.13: 41-43.
Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., and Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. Biotech. 7: https://doi.org/10.1007/s13205-017-0682-0
Son, S. and Lewis B.A. (2002). Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Structure-activity relationship. J.Agric. Food Chem. 50: 468-472.
Tuo,Y., Yu, H., Ai, L., Wu, Z,, Guo, B. and Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains.J.DairySci. 96:4252–4257.
Veron, H.E., Di Risio, H.D., Isla, M.I. and Torres, S.(2017). Isolation and selection of potentialprobiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. Lebensm. Wiss. Technol. 84: 231–240.
Wang, C.Y., Lin, P.R., Ng, C.C. and Shyu, Y. T.( 2010). Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe. 16: 578–585.
Wang, K., Hong-Wei, Z., Feng, J., Ma, L., De La Fuente-Núñez, C., Wang, S. and Lu, X. (2019). Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. J.Agric.FoodRes.1: 100006.https://doi.org/10.1016/j.jafr .2019.100006
Wang, Y., Fang, Z., Zhai, Q., Cui, S., Zhao, J., and Zhang, H. (2021). Supernatants of Bifidobacterium longum and Lactobacillus plantarum strains exhibited antioxidative effects on A7R5 cells. Microorganisms. 9: 452. doi: 10.3390/microorganisms9020452
Xu, Z., Li, C., Ye, Y., Wang, T., Zhang, S. and Liu, X. (2022). The β-galactosidase LacLM plays the major role in lactose utilization of Lactiplantibacillus plantarum. LWT. 153:112481. https://doi.org/10.1016/j.lwt.2021.112481
Zhao, Q., Wang, Y., Zhu, Z., Zhao, Q., Zhu, L. and Jiang, L. (2023). Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816. Food Sci. Human Wel.12: 809–816.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P., O'Toole, P.W., Pot B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle,M.G. and Lebeer S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70:2782–2858.