Recent updates on production and reproduction traits of buffalo (Bubalus bubalis): A review
193 / 128
Keywords:
Buffalo,reproduction traits, production traitsAbstract
In many South Asian and Mediterranean countries, buffaloes are an important livestock resource, contributing milk, meat, skins, and draft power for agricultural operations, which are essential for the overall development of society. Various recent high-throughput technologies, such as molecular markers, genomic selection (GS) and genome-wide association studies (GWASs), provide an extensive range of whole-genome data and high coverage of genomic, transcriptomic and proteomic data. This review highlights these high-throughput technologies linked to the production and reproduction traits of buffaloes. The availability of recent high-quality reference genome and genotyping marker panels for buffaloes have supported many genome-based studies and provided valuable information for understanding the genetic basis of growth, functional traits, and performance traits. In conclusion, high-throughput technologies provide an opportunity to detect important markers and genomic regions associated with performance traits and also present the possibility of genomic selection as a promising strategy in buffalo breeding programs to accelerate genetic gain.
Downloads
References
Abdel-Shafy, H., Awad, M.A.A., El-Regalaty, H., Ismael, A., El-Assal, S.E.D. and Abou-Bakr, S. (2020). A single-step genomic evaluation for milk production in Egyptian buffalo. Livest. Sci., 234: 103977.
Ahmadzadeh, M., Rashidi, F., Najafabadi, H.A., Jaferian, A. and Eghbalsaied, S. (2019). Effects of genetic polymorphism in Pit1, GH, GHR and KCN3 on milk yield and body weight of Khuzestan (Iran) water buffaloes. Rev. Colomb. de Cienc. Pecu.,32: 107-116.
Al-Mutar, H., Al-Hamedawi, T.M. and Alyasiri, E. (2017). Investigation of the polymorphism in FSHR gene associated with fertility in pregnant and non- pregnant Iraq buffaloes. J. Mol. Microbiol. Biotechnol.,5: 1323-1327.
Andrade, R.D., Velez, G.I., Diaz, Y.S. and Sanchez, S.S. (2009). Neutralization and addition of sweetening effect in physicochemical, microbiological and sensory properties of buffalo milk arequipe. Vitae-Columbia,16: 201-207.
Arora, R., Sharma, A., Sharma, U., Girdhar, Y., Kaur, M., Kapoor, P., Ahlawat, S. and Vijh, R.K. (2019). Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci. Rep.,9: 5993.
Awad, M.A.A., Abou-Bakr, S., El-Regalaty, H., El-Assal, S.E.D. and Abdel-Shafy, H. (2020). Determination of potential candidate genes associated with milk lactose in Egyptian buffalo. World's Vet. J.,10: 35-42.
Bartocci, S., Tripaldi, C. and Terramoccia, S. (2002). Characteristics of foodstuffs and diets, and the quanti-qualitative milk parameters of Mediterranean buffaloes bred in Italy using the intensive system – An estimate of the nutritional requirements of buffalo herds lactating or dry. Livest. Prod. Sci.,77: 45-58.
Bharadwaj, A., Dixit, V.B., Sethi, R.K. and Khanna, S. (2007). Association of breed characteristics with milk production in Murrah buffaloes. Indian J. Anim. Sci.,77: 1011-1016.
Bhat, P.N. (2010). Buffalo Production. Stadium Press, New Delhi, pp. 175-187.
Borghese, A. (2010). Development and perspective of buffalo and buffalo market in Europe and Near East. In: Proceedings of the 9thWorld Buff Congress, Buenos Aires, pp. 20-31.
Borghese, A., Terzano, G.M. and Mazzi, M. (2011). Buffalo breeding development in Italy. Seminar dan Lokakarya Nasional Kerbau, pp. 23-30.
Camargo, G.D., Aspilcueta-Borquis, R.R., Fortes, M., Porto-Neto, R., Cardoso, D.F. and Santos, D. (2015). Prospecting major genes in dairy buffaloes. BMC Genom.,16: 872.
Cammack, K., Thomas, M. and Enns, R. (2009). Reproductive traits and their heritabilities in beef cattle. Prof. Anim. Sci.,25: 517-528.
Chitra, A., Jain, A., Kumar, M., Ratwan, P. and Gupta, A.K. (2018). Effect of genetic and non-genetic factors on milk yield and milk composition traits in Murrah buffaloes. Indian J. Anim. Res.,52: 304-308.
DAHD (2018). Basic Animal Husbandry and Fishery Statistics, Department of Animal Husbandry and Dairying, Ministry of Agriculture, Government of India. (https://www.dahd.nic.in/reports/annual-report-2017-18, Accessed 21 August, 2022)
Dahiya, S.P., Rathi, S.S. and Singh, B. (1994). Genetic variability in some performance traits of Murrah buffaloes. Indian J. Dairy Sci.,47: 614-615.
De Araujo Neto, F.R., Takada, L., Dos Santos, D.J.A., Aspilcueta-Borquis, R.R., Cardoso, D.F. and Do Nascimento, A.V. (2020). Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reprod. Domest. Anim.,55: 1565-1572.
Deng, T., Liang, A., Liang, S., Ma, X., Lu, X., Duan, A., Pang, C., Hua, G., Liu, S., Campanile, G., Salzano, A., Gasparrini, B., Neglia, G., Liang, X. and Yang, L. (2019). Integrative analysis of transcriptome and GWAS data to identify the hub genes associated with milk yield trait in buffalo. Front. Genet.,10: 36.
Deng, T.X., Ma, X.Y., Duan, A., Lu, X.R.and Abdel-Shafy, H. (2024). Genome-wide copy number variant analysis reveals candidate genes associated with milk production traits in water buffalo (Bubalus bubalis). J.Dairy Sci., 107(9):7022-7037. https://doi.org/10.3168/jds.2023-24614
Deng, T., Ma, X., Pang, C., Liang, S., Lu, X., Duan, A. and Liang, X. (2018). Molecular characterization of the buffalo SCAP gene and its association with milk production traits in water buffaloes. J. Dairy Res.,85: 133-137.
Deshmukh, B., Verma, A., Gupta, I.D., Kashyap, N. and Mishra, R. (2022). Characterization of coding areas of spag11b gene in murrah bulls. Buffalo Bull.,41(2): 213-223.
Du, C., Deng, T., Zhou, Y., Ye, T., Zhou, Z. and Zhang, S. (2019). Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus bubalis). Anim. Genet.,50: 207-216.
El-Halawany, N., Abdel-Shafy, H., Shawky, A., Abdel-Latif, M., Al-Tohamy, A. and El-Moneim, O. (2017). Genome-Wide Association study for milk production in Egyptian Buffalo. Livest. Sci.,198: 10.
El-Magd, M.A., Fathy, A., Kahilo, K.A., Saleh, A.A., El Sheikh, A.I., Al-Shami, S. and El-Komy, S.M. (2021). Polymorphisms of the PRLR gene and their association with milk production traits in Egyptian Buffaloes. Animals,11: 1237.
El-Wishy, A.B. (2007). The postpartum buffalo II. Acyclicity and anestrus. Anim. Reprod. Sci.,97: 216-236.
FAO (2000). World Watch List for Domestic Animal Diversity, In: Scherf, B.D. (Eds.),3rd Edn.,FAO, Rome.
FAOSTAT (2019). FAO Statistics Division. Online http://www.fao.org/faostat/en/#data (Accessed 21 August, 2022)
Freitas, A.C., Camargo, G., Aspilcueta-Borquis, R., Stafuzza, N., Venturini, G., Tanamati, F., Hurtado-Lugo, N., Barros, C.C. and Tonhati, H. (2016). Polymorphism in the A2M gene associated with high-quality milk in Murrah buffaloes (Bubalusbubalis). Genet. Mol. Res.,15: 10.
Ghuman, S.P.S., Singh, J., Honparkhe, M., Ahuja, C.S., Dhami, D.S., Nazir, G. and Gandotra, V.K. (2011). Differential fertility in dairy buffalo: Role of thyroid and blood plasma biochemical milieu. Iranian J. Appl. Anim. Sci.,1: 105-109.
Gunwant, P., Pandey, A.K., Kumar, A., Singh, I., Kumar, S., Phogat, J.B., Kumar, V., Patil, C.S., Tomar, P., Kumar, S. and Magotra, A. (2018). Polymorphism of melatonin receptor (MTNR1A) gene and its association with seasonal reproduction in water buffalo (Bubalusbubalis). Anim. Reprod. Sci.,199: 51-59.
Gurung, B.S. and Johar, K.S. (1982). Studies on factors affecting first lactation milk yield in Murrah buffaloes. Indian Vet. J.,59: 521-526.
Hao, M., Jiang, J., Zhang, Y., Wang, S., Fu, W., Zou, F., Xie,Y., Zhao, S. and Li, W. (2021). Transcriptional profiling of buffalo mammary gland with different milk fat contents. Gene,802: 145864.
Hao, X., Liang, A., Plastow, G., Zhang, C., Wang, Z., Liu, J., Salzano, A., Gasparrini, B., Campanile, G., Zhang, S.and Yang, L. (2022). An integrative genomic prediction approach for predicting buffalo milk traits by incorporating related cattle QTLs. Genes, 13(8): 1430. https://doi.org/10.3390/genes13081430
Herrera, J.R.V., Flores, E.B., Duijvesteijn, N., Gondro, C. and van der Werf, J.H.J. (2018). Genome-wide association study for milk traits in Philippine dairy buffaloes. In: Proceedings of the 11thWorld Congress on Genetics Applied to Livestock Production, 11-16 February 2019, Auckland, New Zealand, pp. 825.
Hosseini, S.M., Tingzhu, Y., Pasandideh, M., Liang, A., Hua, G., Farmanullah, Schreurs, N.M., Raza, S., Salzano, A., Campanile, G., Gasparrini, B. and Yang, L. (2021). Genetic association of PPARGC1A gene single nucleotide polymorphism with milk production traits in Italian Mediterranean Buffalo. BioMed Res. Int., 3653157.
Ingole, S.D., Deshmukh, B.T., Nagvekar, A.S. and Bharucha, S.V. (2012). Serum profile of thyroid hormones from birth to puberty in buffalo calves and heifers. J. Buff. Sci.,1: 39-49.
Jain, A., Baviskar, P.S., Kandasamy, S., Kumar, R., Singh, R., Kumar, S., Agarwal, S.K., Joshi, P. and Mitra, A. (2012a). Interferon stimulated gene 15 (ISG15): molecular characterization and expression profile in endometrium of buffalo (Bubalusbubalis). Anim. Reprod. Sci.,133(3-4): 159-68.
Jain, A., Jain, T. and Mitra, A. (2012b). Expression and immunohistochemical localization of ghrelin gene in buffalo (Bubalusbubalis) corpus luteum. Indian J. Anim. Res.,46(1): 61-65.
Jain, A., Jain, T., Sachdeva, G.K., De, S., Goswami, S.L. and Datta, T.K. (2012c). Effect of FSH on expression of cathepsin K and S during in vitro maturation of buffalo oocytes and their subsequent developmental competence. Indian J. Anim. Res.,46(2): 137-142.
Jain, A. and Mitra, A. (2012). Expression and immunohistochemical localization of ISG15 gene in buffalo (Bubalusbubalis) corpus luteum. Indian J. Dairy Sci., 65(2): 42-46.
Jain, A., Jain, T., Kumar, P., Kumar, M., De, S., Gohain, M., Kumar, R. and Datta, T.K. (2016). Follicle-stimulating hormone–induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes.Domest. Anim. Endocrinol.,55: 74-82.
Jainudeen, M.R. and Hafez, E.S.E. (1993). Cattle and buffalo. In: Hafez, E.S.E (Eds.), Reproduction in Farm Animals, Lea and Febiger, Philadelphia, PA, USA, 6th Edn., 315-329.
Kandasamy, S., Jain, A., Kumar, R., Agarwal, S.K., Joshi, P. and Mitra, A. (2010). Molecular characterization and expression profile of uterine serpin (SERPINA14) during different reproductive phases in water buffalo (Bubalus bubalis). Anim. Reprod. Sci., 122(1-2): 133-41.
Kandasamy, S., Jain, A., Baviskar, P., Kumar, R., Joshi, P., Agarwal, S.K. and Mitra, A. (2013). Molecular characterization and expression profile of ghrelin gene during different reproductive phases in buffalo (Bubalusbubalis). Domest.Anim. Endocrinol., 45(2): 55-63.
Kaur, H. and Arora, S.P. (1982). Influence of level of nutrition and season on the oestrous cycle rhythm and on fertility in buffaloes. Trop. Agri.(Trinidad)59: 274-278.
Kumar, M., Vohra, V., Ratwan, P., Chopra, A. and Chakaravarty, A.K. (2017). Influence of FASN gene polymorphism on milk production and its composition traits in Murrah buffaloes. Indian J. Anim. Res., 51: 640-643.
Lázaro, S.F., Tonhati, H., Oliveira, H.R., Silva, A.A., Nascimento, A.V., Santos, D.J.A., Stefani, G. and Brito, L.F. (2021). Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J. Dairy Sci.,104: 5768-5793.
Li, J., Liu, J., Campanile, G., Plastow, G., Zhang, C. and Wang, Z. (2018a). Novel insights into the genetic basis of buffalo reproductive performance. BMC Genom.,19: 814.
Li, J., Liu, J., Liu, S., Plastow, G., Zhang, C. and Wang, Z. (2018b). Integrating RNA-seq and GWAS reveals novel genetic mutations for buffalo reproductive traits. Anim. Reprod. Sci.,197: 290-295.
Liu, J.J., Liang, A.X., Campanile, G., Plastow, G., Zhang, C., Wang, Z., Salzano, A., Gasparrini, B., Yang, L.G. and Cassandro, M. (2018). Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J. Dairy Sci.,101: 433-444.
Mangurkar, B.R. and Desai, R.N. (1981). Inter-relationship between heifer-hood, body weight and first lactation performance in buffaloes. Indian Vet. J., 58: 199-202.
Marai, I.F.M. and Haeeb, A.A.M. (2010). Buffalo’s biological functions as affected by heat stress – a review. Livest. Sci.,127: 89-109.
Mondal, S. and Prakash, B.S. (2007). Endocrine profiles of estrous cycle in buffalo: An overview. Asian-Australas. J. Anim. Sci.,20: 124-131.
Naveena, B.M. and Kiran, M. (2014). Buffalo meat quality, composition and processing characteristics: contribution to the global economy and nutritional security. Anim. Front.,4: 18-24.
Othman, O.E. and Abdel-samad, M.F. (2019). RFL polymorphism of three fertility genes in Egyptian buffalo. J. Appl. Biol. Sci.,7: 94-101.
Paul, N., Kumaresan, A., Das, G.M., Nag, P., Guvvala, P.R., Kuntareddi, C., Sharma, A., Selvaraju, S. and Datta, T.K. (2021). Transcriptomic profiling of buffalo spermatozoa reveals dysregulation of functionally relevant mRNAs in low-fertile bulls. Front. Vet. Sci.,7: 609518.
Ramos, A.D., Malhado, C.H.M., Martins, R., Carneiro, P.L.S., Affonso, P. and de Souza, J.C. (2007). Genetic and environmental effects over milk production of buffalo cows in Brazil. Italian J. Anim. Sci.,6: 328-330.
Rao, M.K. and Nagarcenkar, R. (1977). Potentialities of the buffalo. World Rev. Anim. Prod.,13: 53-62.
Rathod, A., Vaidya, M., Ali, S. S. (2019). Genetic studies of productive and reproductive attributes of Surti buffalo in MaharashtraInt. J. Livest. Res., 8: 309
Ratwan, P., Chakravarty, A.K. and Kumar, M. (2019). Assessment of relation among production and reproduction traits in Sahiwal cattle at an organized herd of northern India. Biol. Rhythm Res., 1-9. doi:10.1080/09291016.2019.1628391
Rehman, S.U., Hassan, F., Luo, X., Li, Z. and Liu, Q. (2021). Whole genome sequencing and characterization of buffalo genetic resources: Recent advances and future challenges. Animals,11: 904.
Roy, B., Rajput, S., Raghav, S., Kumar, P., Verma, A., Jain, A., Jain, T., Singh, D., De, S., Goswami, S.L. and Datta, T.K. (2013). Characterization of oocyte expressed GDF9 gene in buffalo and mapping of its TSS and putative regulatory elements. Zygote,21(2): 115-124.
Roy, K.S. and Prakash, B.S. (2009). Plasma progesterone, oestradiol-17β and total oestrogen profiles in relation to oestrous behaviour during induced ovulation in Murrah buffalo heifers. J. Anim. Physiol. Anim. Nutr.,93: 486-495.
Saini, M.S., Dhanda, O.P., Singh, N. and Georgie, G.C. (1998). The effect of improved management on the reproductive performance of pubertal buffalo heifers during the summer. Indian J. Dairy Sci.,51: 250-253.
Salari, F., Altomonte, I. and Martini, M. (2013). Buffalo milk: a case study of some parameters related to milk production. Large Anim. Rev.,19: 17-20.
Seren, E., Parmeggiani, A. and Campanile, G. (1995). The control of ovulation in Italian buffalo. In: Proceedings of the Symposium Reproduction and Animal Breeding: Advances and Strategy, Milan, Italy, pp. 265-275.
Shah, N.S.H. (2007). Prolonged calving intervals in the Nili Ravi buffalo. Italian J. Anim. Sci.,6: 694-696.
Singh, J., Nanda, A.S. and Adams, G.P. (2000). The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci.,60-61: 593-604.
Sosa, A.S.A., Mahmoud K.G.M., Kandiel, M.M.M., Eldebaky, H.A.A., Nawito, M.F. and Abou EI-Roos M.E.A. (2016). Genetic polymorphism of Luteinizing Hormone Receptor Gene in relation to fertility of Egyptian Buffalo. BioTech. Indian J. Res., 12: 1-11.
Venturini, G.C., Cardoso, D.F., Baldi, F., Freitas, A.C., Aspilcuetaborquis, R.R., Santos, D.J., Camargo, G.M., Stafuzza, N.B., Albuquerque, L.G. and Tonhati, H. (2014). Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genet. Mol. Res.,13: 10256-10268.
Vohra, V., Chhotaray, S., Gowane, G., Alex, R., Mukherjee, A., Verma, A. and Deb, S.M. (2021). Genome-Wide Association studies in Indian buffalo revealed genomic regions for lactation and fertility. Front. Genet.,12: 696109.
Vohra, V., Dayal, S. and Bhattacharya, T. (2012). SSCP typing of alpha-lactalbumin and beta-lactoglobulin gene and its association with milk production and constituent traits in Indian riverine buffalo. Indian J. Anim. Sci.,82: 884-888.
Warriach, H.M., McGill, D.M., Bush, R.D., Wynn, P.C. and Choha, K.R. (2015). A review of recent developments in buffalo reproduction - A review. Asian-Australas. J. Anim. Sci.,28: 451-455.
Ye, M., Mengting, X., Manran, L., Bin, Z., Abd El-Kader, H., Alam, S. and Mahrous, K. (2020). Identification of candidate genes associated with milk yield trait in buffaloes (Bubalus bubalis) by restriction-site-associated DNA sequencing. Rev. Bras. de Zootec., 49: 10.
Ye, T., Deng, T., Hosseini, S., Raza, S.H.A., Chao, D., Chen, C., Xinxin, Z., Xiangwei, H. and Liguo, Y. (2021). Association analysis between FASN genotype and milk traits in Mediterranean buffalo and its expression among different buffalo