Studies on evaluation of antibacterial activities of some cultivated mushrooms against human pathogenic bacteria

Abstract views: 343 / PDF downloads: 583


  • Sanjeev Kumar HP University Shimla, Himachal Pradesh, India



Mushrooms have been used as source of nutritive food and medicine since ancient time. The indiscriminate utilization of modern antibiotic drugs has caused the development of multiple drug resistance in pathogenic microbes. The antimicrobial properties of herbs and mushrooms have proved to be fruitful in getting rid of from the problem of multiple drug resistance. In this study, the antibacterial activity of acetone, aqueous and methanol extracts of Agaricus bisporus, Calocybe indica, Flammulina velutipes, Pleurotus florida, and Volvariella volvacea were investigated against human pathogenic bacteria. The antimicrobial activity  of these mushrooms were evaluated following the agar well diffusion method against Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes and gram negative bacteria Shigella dysenteriae, Salmonella typhi and Escherichia coli. All the studied mushrooms displayed considerable antibacterial activity against all the pathogenic bacteria under study and it was found to be extraction solvent dependent. The zones of growth inhibition of 12.26-14.80 mm in Agaricus bisporus, 12.84-15.31mm in Calocybe indica, 13.82-16.17 mm Flammulina velutipes, 12.2-14.80 mm in Pleurotus florida, and 12.34-15.84 mm in Volvariella volvacea were recorded in acetone extract. The zones of growth inhibition of 10.73-11.23 mm in Agaricus bisporus, 10.63-12.62 mm in Calocybe indica, 12.50-13.84 mm Flammulina velutipes, 11.14-11.97 mm in Pleurotus florida, and 11.51-12.31 mm in Volvariella volvacea were observed in aqueous extract. The zone of inhibition observed in methanol extract were 13.06-14.93 mm in Agaricus bisporus, 11.96-14.01 mm in Calocybe indica, 12.01-13.41 mm Flammulina velutipes, 13.02-13.74 mm in Pleurotus florida, and 13.32-15.21 mm in Volvariella volvacea. The minimum inhibitory concentration (MIC) of acetone extract ranged from 0.3125 µg/100µl-0.625 µg/100µl, aqueous extract 0.625 µg/100µl-2.5 µg/100µl and methanol extract 0.3125 µg/100µl-1.25 µg/100µl. The results emphasize that there is a need for further studies to isolate and characterize the bioactive compounds present in these cultivated mushrooms so that their antibacterial potential can be used to develop effective drugs against these human pathogenic bacterial strains.

Keywords: Mushrooms, antibacterial, minimum inhibitory concentration, zone of inhibition.

Author Biography

  • Sanjeev Kumar, HP University Shimla, Himachal Pradesh, India
    Sanjeev Kumar, Associate Professor, Govt. College Bilaspur, Himachal Pradesh, India. 174001



Akyüz, M., A. Onganer, P. Erecevit, and S. Kirbag. 2010. Antimicrobial Activity of some Edible Mushrooms in the Eastern and Southeast Anatolia Region of Turkey, Gazi Uni J of Sci 23: 125-130.

Ali, R., M. Rava, H. Boro, and S. Das. 2017. Fatty acid, amino acid, bioactive compounds and anti-microbial properties of wild Volvariella volvacea from Kokrajhar, (Assam), India. Mushroom Research 26(2): 165-174.

Ayodele, S.M. and M. E. Idoko. 2011. Antimicrobial activities of four wild edible mushrooms in Nigeria Int J of Sci and Nat 2(1): 55-58

Benedict, R.G. and L.R. Brady. 1972. Antimicrobial activity of mushroom metabolites, J. Pharmaceut Sci 61(11): 1820-1822.

Chang, S and S. Wasser, 2017. The cultivation and environmental impact of mushrooms, New York: Oxford University Press; pp. 43.

Chang, S.T. and P.G. Miles. 1992. Mushroom Biology: A New Discipline. Mycologist 6: 64-65.

Chang, S.T. and P.G. Miles. 2004. Mushroom: cultivation, nutritional value, medicinal effects and environmental impact, 2nd edition. CRC Press, Boca Raton, Fla. pp. 455.

Chellal A and E. Lukasova. 1995. Evidence for antibiotics in the two Algerien Truffles Terfezia and Tirmania. Pharmazie 50: 228- 229.

Cohen, R., L. Persky, and Y. Hadar. 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus, Appl Microbiol Biotechnol 58: 582-594.

Collins, R.A., T.B. Ng, 1997. Polysaccharopeptide from Coriolus versicolor has potential for use against human immunodeficiency virus type I infection, Life Sci 60 (25): 383-387.

Conchran, K.W. 1978. Medicinal effects, In: The Biology and Cultivation of Edible Mushroom, S.T., Chang, and W.A., Hayes (eds.), Academic Press, New York, 160-187.

Datta, S., J. Dubey, S. Gupta, A. Paul, P. Gupta, and A. Mitra. 2020. Tropical Milky White Mushroom, Calocybe indica (Agaricomycetes): An Effective Antimicrobial Agent Working in Synergism with Standard Antibiotics. Int J of Med Mush 22(4):335 – 346.

Giri, S., G. Biswas, P. Pradhan, S. Mandal and K. Acharya. 2012. Antimicrobial Activities of Basidiocarps of Wild Edible Mushrooms of West Bengal, India. Int J of Pharm Tech Research. 4: 1554-1560.

Gunde-Cimerman, N. and A. Cimerman. 1995. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy- 3-methylglutaril coenzyme A reductase- Lovastatin. Exp. Mycol 19: 1-6.

Hemashenpagam, N. and T. Selvaraj. 2010. Antibacterial potential of different extracts of Solanum xanthocarpum Chard and Wendt. Plant Arch., 1: 387- 390.

Hussein, A., E. Mohammed, and E. Hamid. 2018. Antibacterial Activity of Alcoholic and Aqueous Extracts of Agaricus bisporus Against Food Borne Bacterial Pathogens. J of Al-Nahrain Univ Sci. 21: 111-114.

Iwalokun, B.A., U.A. Usen, , A.A. Otunba and D.K. Olukoya. 2007. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus, Afr. J. Biotechnol., 6 (15): 1732-1739.

Jagadeesh, R., N. Raaman, K. Periyasamy, L. Hariprasath, R. Thangaraj, R. Srikumar, et al. 2010. Proximate analysis and antibacterial activity of edible mushroom Volvariella bombycina. Int J Microbiol Res. 1(3): 110-113.

Jagadish, L.K., R. Shenbhagaraman, V. Venkatakrishnan, and V. Kaviyarasan. 2008. Studies on the phytochemical, antioxidant and antimicrobial properties of three indigenous Pleurotus Species. J Mol. Biol. Biotechnol, 1: 20-29.

Jagadish, L.K., V.V. Krishnan, R. Shenbhagaraman and V. Kaviyarasan. 2009. Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J. E. Lange) Imbach. before and after boiling. Afr. J. Biotechnol. 8 (4): 654- 661.

Jonathan, S.G. and I.O. Fasidi. 2003. Antibacterial activities of Nigerian edible macrofungi- Lycoperdon pusilum (Bat.Ex.) and Lycoperdon giganteus (Pers.) Afr J Biomed Res 6: 85-90.

Joshi, M. and A. Sagar. 2014. In vitro free radical scavenging activity of Sparassis crispa collected from North Western Himalayas, India. Journal of Mycology 2014: 1-4.

Joshi, M. and A. Sagar. 2016. Culturing and spawning strategies for cultivation of Ganoderma lucidum (Curtis) P. Karst. Int J Pharma Pharmaceutical Sci 8(2): 326-328.

Joshi, M., P. Pathania and A. Sagar. 2014.Phytochemical analysis and In vitro antibacterial activity of Russula lepida and Pleurotus ostreatus from North West Himalayas, India. Int J Pharmacognosy Phytochem Res 6(4): 1032-34.

Karacsonyi, S., and L. Kuniak. 1994. Polysaccharides of Pleurotus ostreatus: Isolation and structure of pleuran, an alkali-insoluble Beta-D Glucan. Carbohyd. Polymer 24: 107-111.

Karaman, M., E. Jovin, R. Malbasa, M. Matavuly and M. Popovic. 2010. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother.Res. 24:1473–1481.

Klein, E., D.L. Smith DL and R. Laxminarayan. 2007. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States. Emerging infectious disease. 13(12): 1840-46.

Krishnaveni, M. and M, Manikandan. 2014. Antimicrobial Activity of Mushrooms. Res J of Pharmacy and Technology 7: 399-400.

Lallawmsanga, A.K. Passari, V.K. Mishra, V.V. Leo, B.P. Singh, G.V. Meyyappan, V.K. Gupta, S. Uthandi and R.C. Upadhyay. 2016. Antimicrobial potential, identification and phylogenetic affiliation of wild mushrooms from two sub-tropical semi-evergreen Indian Forest ecosystems. PLoS One. 11(11):e0166368.

Manjunathan, J. and V. Kaviyarasan. 2010. Solvent based effectiveness of antibacterial activity of edible mushroom Lentinus tuberregium (Fr.). Int J PharmTech Res. 2(3): 1910-1912.

McNicholl, B.P., J.W. McGrath and J.P. Quinn. 2006. Development and application of a resazurin-based biomass activity test for activated sludge plant management. Water Res. 41: 127-133.

Menaga, D., P. U. Mahalingam, S. Rajakumar, and P. M. Ayyasamy. 2012. Evaluation of phytochemical characteristics and antimicrobial activity of Pleurotus florida mushroom. Asian J of Pharmaceutical and Clinical Res. 5 (4): 102–106.

Meng, X., H. Liang and L. Luo. 2016. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research 424: 30-41.

Muthukumaran, P., N. Saraswathy, R. Kogilavani, S. Udhayabhaskar and S. Sindhu. 2014. Preliminary Phytochemica Screening and Antimicrobial Properties of Pleurotus florida and Pleurotus eous Against Some Human Pathogens: A Comparative Study. Int Res J of Pharmacy 5 (2): 88-91.

Ndungutse, V., R. Mereddy and Y. Sultanbawa. 2015. Bioactive properties of mushroom (Agaricus bisporus) stipe extracts. J Food Process Pres 1:1-9.

Nedelkoska, D. N., N.A. Panˇcevska, H. Amedi, D. Veleska, E. Ivanova, M. Karadelev, et al. 2013. Screening of antibacterial and antifungal activities of selected Macedonian wild mushrooms. Matica Srpska. J Nat Sci 124: 333–340.

Nwe, M.L. and T.T. Zin. 2020. Phytochemistry and Pharmacological Studies on Flammulina velutipes(Curtis). Int J of Scientific Res and Engin Dev (3)3: 32-37.

Okhuoya, J. A., E.O. Akpaja, O.O. Osemwegie, A.O. Ogherekano and C.A. Ihayere. 2010. Nigerian mushrooms: underutilized non-wood forest resource. J of Appl Sci and Env management 14(1): 43-54.

Ooi, V.E.C. and F. Liu. 1999. A Review of pharmacological activities of mushroom polysaccharides. Inter Journ of Med Mush. 1:195-200.

Padmavathy M., R.Sumathy, N. Manikandan and R. Kumuthakalavalli. 2014. Antimicrobial activity of mushrooms against skin infection causing pathogens. Res. Biotechnol 5(2): 22-26.

Pathania, P. and A. Sagar. 2014. Studies on antibacterial activity of Cordyceps militaris: A medicinal mushroom from North West Himalayas. Kavaka 43: 35-40.

Perera, W., D. Abeytungaa, R. Wijesundera. 2001. Anti-bacterial activities of Volvariella volvacea. J of the National Science Foundation of Sri Lanka 29 (1-2):61-68.

Priya, J. L. and V. Srinivasan. 2013. Studies on the Antibacterial Activities of Mushroom. Int J Curr Microbiol App Sci 2(6): 184-189.

Rajeshbabu, D., B. Sunilkumar, M. Pandey and G.N. Rao. 2012. Proximate, vitamins and mineral element analysis of cultivated edible mushrooms: Calocybe indica and Hypsizygus ulmarius. Mushroom Res. 21(2): 129-135.

Ramesh, C. and M.G. Pattar. 2010. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Pharmacogn Res. 2(2): 107-112.

Sagar, A. and K. Thakur. 2013. Study on ultrastructure and antibacterial activity of Lactarius sanguiflus. J Pure Appl Micro 7: 2873-2877.

Sagar, A., S. Aghnihotri and K. Thakur. 2015b. Studies on antibacterial activity of wild edible mushroom – Lactarius vellereus. Indain J Mush 33(1): 12-18.

Sagar, A., S. Aghnihotri and K. Thakur. 2015c. Studies on antibacterial activity of Tricholoma caligalum. Indian J. Mush 33(1): 5-11.

Sagar, A., S. Agnihotri and K. Thakur. 2015a. Studies on ultrastructure and antibacterial activity of Cantharellus cibarus. J Pure App Microbiol 9: 2559-2563.

Sagar, A., Kusumlata and A.K. Sehgal. 2013b. Studies on antibacterial activity of Boletus edulis Bull. and Cantharellus cibarius Fr. Indian J Mush 31(1): 21-30.

Sagar, A., P. Pathania and V.P. Sharma. 2013a. Studies on ultrastructure and artificial cultivation of Cordyceps militaris. Indian J. Mush 31(2): 18-20.

Shah, S. R., C. I. Ukaegbu, H. A. Hamid and O. R. Alara. 2018. Evaluation of antioxidant and antibacterial activities of the stems of Flammulina velutipes and Hypsizygus tessellatus (white and brown var.) extracted with different solvents. Journal of Food Measurement and Characterization

Sharma, M. V., A. Sagar and M. Joshi. 2015. Study on Antibacterial Activity of Agaricus bisporus (Lang.) Imbach. Int. J .Curr. Microbiol. App. Sci 4(2): 553-558.

Singh, M., S. Kamal, and V.P. Sharma. 2017. Status and trends in world mushroom production-I. Mushroom Research 26(1): 1-20.

Smania, E.F.A., F. Delle Monache, A, Smania, R.A. Yunes and R.S. Cuneo. 2003. Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 74 (4): 375- 377.

Tambekar, D.H., T.P. Sonar, M.V. Khodke and B.S. Khante. 2006. The novel antibacterials from two edible mushrooms: Agaricus bisporus and Pleurotus sajor-caju. Int J Pharmacol. 2(5): 582-585.

Thillaimaharani, K. A., K. Sharmila, P. Thangaraju, M. Karthick and M. Kalaiselvam. 2013. Studies on antimicrobial and antioxidant properties of oyster mushroom Pleurotus florida. IJPSR 4(4): 1540-1545.

Valverde, M.E., T. Hernández-Pérez and O. Paredes-López. 2015. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol. Volume 2015, Article ID 376387, 14 pages.

Wang, H., and T.B. Ng. 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25: 1-5.

Wani, B.A., R.H. Bodha and Wani, A.H. 2010. Nutritional and medicinal importance of mushrooms. J. Med. Plants Res., 4(24): 2598-2604.

Waqas, H.M., M. Akbar and M.S. Iqbal. 2019. Antibacterial and antioxidation activities of Agaricus bisporus (J.E. Lange) Imbach from Pakistan. Bangladesh J. Bot. 48(4): 1075-1081.

Wasser, S. P. and A. L. Weis. 1999. Medicinal properties of substances occurring in higher Basidomycetes mushrooms: Current perspectives. Int J of Med Mushrooms, 1: 31–62.

Wasser, S.P. 2002. Review of medicinal mushrooms advances: Good news from old allies. Herbal Gram, 56: 28–33.

Yang, Q.Y. and S.C. Jong. 1989. “Medicinal mushrooms in China.†Mushroom Science XII (part 1). 631 - 643.









How to Cite

Studies on evaluation of antibacterial activities of some cultivated mushrooms against human pathogenic bacteria. (2022). Mushroom Research, 31(1), 81-91.