Morpho-Physiological Effects of Salt Stress on Germination and Early Seedling Development in Okra (Abelmoschus esculentus L. cv. Toros Sultanı)
102 / 46
Keywords:
Okra, salt stress, germination, seedling development, morpho-physiological, Abelmoschus esculentus L.Abstract
Okra (Abelmoschus esculentus L.) is a vegetable crop known for its high nutritional value and increasing economic importance, particularly due to its adaptability to warm climate conditions. However, salinity - one of the widespread abiotic stress factors affecting agricultural lands - negatively impacts the germination and seedling development of many cultivated species, including okra. This study was conducted in 2024 at the Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Erciyes University, with the objective of evaluating the effects of daily irrigation with water of different salt concentrations (0, 4, 8 and 12 dSm-1) on the germination and early seedling development of the okra cultivar ‘Toros Sultanı’. In the experiment, 50 seeds were used per treatment with five replications. A comprehensive data set consisting of 29 morpho-physiological parameters related to germination and germination matrix was measured. The results revealed that all salt treatments had statistically significant effects (p < 0.001) on all measured germination and seedling parameters. While limited reductions or signs of metabolic adaptation were observed at 4 and 8 dSm-1, the 12 dSm-1 treatment caused marked declines in several critical traits such as germination percentage, germination speed, vigor indices, root-to-shoot ratio, Timson and modified Timson indices, synchronization and emergence indices. The stress tolerance index (STI) calculations showed that the ‘Toros Sultanı’ cultivar exhibited physiological tolerance under moderate salinity but that this tolerance diminished considerably under high salinity conditions like 12 dSm-1. These findings suggest that the ‘Toros Sultanı’ cultivar holds agronomic potential for production in saline environments up to 8 dSm-1, while higher salinity levels may lead to substantial yield and emergence losses. The data generated from this study contribute to the understanding of varietal- and species level adaptation mechanisms to salt stress and offer a scientific basis for future research focused on the management of saline soils.
Downloads
References
Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop science, 13(6), 630-633.
Abidalrazzaq Musluh Al Rubaye, O., Yetisir, H., Ulas, F., & Ulas, A. (2021). Verbesserung der Salzstresstoleranz verschiedener Genotypen von Parika-Inzuchtlinien (Capsicum annuum L.) durch Wurzelstöcke mit kräftigem Wurzelsystem. Gesunde Pflanzen, 73, 375-389.
Akhtar, S. S., Andersen, M. N., Naveed, M., Zahir, Z. A., & Liu, F. (2015). Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology, 42(8), 770-781.
Andras, C. D., Simandi, B., Örsi, F., Lambrou, C., Missopolinou‐Tatala, D., Panayiotou, C., ... & Doleschall, F. (2005). Supercritical carbon dioxide extraction of okra (Hibiscus esculentus L) seeds. Journal of the Science of Food and Agriculture, 85(8), 1415-1419.
Aosa, I. (1983). Seed vigor testing handbook. Association of Official Seed Analysts. Contribution, 32, 88.
Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223–271. https://doi.org/10.1016/S0065-2113(05)88006-X
Aydın, M., Pour, A. H., Haliloğlu, K., & Tosun, M. (2015). Effect of putrescine application and drought stress on germination of wheat (Triticum aestivum L.). Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 46(1), 43-55.
Balcı, A., & Boydak, E. (2021). Farklı Kolza (Brassica Napus L.) Genotiplerinde NaCI Konsantrasyonlarının Çimlenme ve Çıkış Üzerine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(5), 1011-1020.
Bayat, E., Koşunkartay, H., & Kodaz, S. (2022). Tuzluluk Stresinin Kırik Ekmeklik Buğday (Triticum aestivum L.) Çeşidinin Çimlenme Parametreleri Üzerine Etkileri. Avrupa Bilim ve Teknoloji Dergisi, (41).
Bayuelo‐Jiménez, J. S., Craig, R., & Lynch, J. P. (2002). Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Science, 42(5), 1584-1594.
Bewley, J. D., Black, M., Bewley, J. D., & Black, M. (1994). Seeds: germination, structure, and composition (pp. 1-33). Springer Us.
Cakır E.Y. and Ulaş, F. (2025). Leaf Physiological Responses Of Tomato Plants As Affected By Different Rootstocks Under Salınıty In Soilless Culture. In Proceedings of the 3rd International Ankara Scientific Studies Congress (ARCENG 2025), 1–2 March 2025 (pp. 6–7) ISBN: 978-625-97514-4-3.
Çamlıca, M., & Yaldız, G. (2017). Effect of salt stress on seed germination, shoot and root length in basil (Ocimum basilicum). International Journal of Secondary Metabolite, 4(3, Special Issue 1), 69-76.
Ceritoğlu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3), 582-591
Cherifi, K., Boufous, E. H., & Douira, A. (2016). Comparative salt tolerance study of some Acacia species at seed germination stage. Asian Journal of Plant Sciences, 15(3–4), 66–74
Chowdhury, F. T., Halim, M. A., Hossain, F., & Akhtar, N. (2018). Effects of sodium chloride on germination and seedling growth of Sunflower (Helianthus annuus L.). Jahangirnagar University Journal of Biological Sciences, 7(1), 35-44.
Cokkizgin, A., Cokkizgin, H. and Girgel, U. (2025). Salinity Stress: Comparative Effects of Sodium and Potassium Salts on Chickpea (Cicer arietinum L.) Germination and Vigor. Legume Research. 1-7. doi: 10.18805/LRF-848.
Czabator, F. J. (1962). Germination value: an index combining speed and completeness of Pine seed gerrmination.
Demirkol, G., YILMAZ, N., & Özlem, Ö. N. A. L. (2019). Tuz stresinin yem bezelyesi (Pisum sativum ssp. arvense L.) seçilmiş genotipinde çimlenme ve fide gelişimi üzerine etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3), 354-359.
Duarte, C. A., & Souza, A. L. (2016). Salt stress effects on seed germination: Mechanisms and biochemical responses. Journal of Seed Science, 38(2), 89–96.
Dušica, J., Jelena, J., Ana, M. J., Federica, Z., Rossella, M., Zorica, N., & Jelena, O. (2025). Salinity stress tolerance in camelina: A focus on the germination stage for crop improvement. Industrial Crops and Products, 227, 120773.
Ehtaiwwesh, A. F., & Emsahel, M. J. (2020). Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar J. Sci, 35, 146-159.
El-Katony, T. M., Hassan, N. M., Abo-Ismael, S. H., & Abdelfatah, S. N. (2024). NaCl salt stress and PEG water stress differentially affect germination and early seedling growth of two sesame (Sesamum indicum L.) cultivars. Discover Life, 54(1), 20.
El-Katony, T., & El-Moghrbi, N. G. (2025). Genotypic difference in salt tolerance during germination and early seedling growth between a native Libyan cultivar and a Ukrainian cultivar of barley (Hordeum vulgare L.). Egyptian Journal of Botany, 65(1), 350-359.
Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2).
Ergeldi, B., & Birsin, M. A. Karabuğdayda (Fagopyrum esculentum Moench.) Farklı Tuz Dozlarının Çimlenme Parametrelerine Etkisi. Erciyes Tarım ve Hayvan Bilimleri Dergisi, 8(1), 51-60.
FAO (2023) Production in Okra. Available at https://www.fao.org/faostat/en/#data/QCL Last Updated: 23 Jan 2025
Ghasemi Golezani, K. and B. Dalil. 2012.'Germination and seed vigor tests'. Publications University Jahad Mashhad
Göçer, H., Yetişir, H., Ulaş, A., Arslan, M., & Aydın, A. (2021). Plant growth, ion accumulation and essential oil content of Salvia officinalis Mill. and S. tomentosa L. grown under different salt stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(3), 505-514.
Hama Ameen, H. H. H., & Ulas, A. (2025). Leaf Physiological and Root Morphological Characteristics Contributing to Salt Tolerance of Snake Melon (Cucumis Melo Var. Flexuosus) Genotypes Under Hydroponics. Journal of Crop Health, 77(3), 1-18.
International Seed Testing Association. (1999). International rules for seed testing. Seed Science and Technology, 27, Supplement.
Irik, H. A., & Bikmaz, G. (2024). Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Scientific Reports, 14(1), 6929.
Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458.
Kadıoğlu, B. (2021). Determination of germination biology of some sage (Salvia ssp.) species under salinity stress. Tekirdağ Ziraat Fakültesi Dergisi, 18(2), 359-367.
Kaya, M. D., Okçu, G., Atak, M., Çıkılı, Y., & Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European journal of agronomy, 24(4), 291-295.
Keshavarzi, M. H. B. (2011). Effect of salt stress on germination and early seedling growth of savory (Satureja hortensis).
Khan, M. A. H., Baset Mia, M. A., Quddus, M. A., Sarker, K. K., Rahman, M., Skalicky, M., ... & Hossain, A. (2022). Salinity-induced physiological changes in pea (Pisum sativum L.): Germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants, 11(24), 3493.
Khayatnezhad, M., & Gholamin, R. (2011). Effects of salt stress levels on five maize (Zea mays L.) cultivars at germination stage. African Journal of Biotechnology, 10(60), 12909-12915.
Kuşçu, H., Çayğaracı, A., & Ndayizeye, J. D. D. (2018). Tuz stresinin bazı kinoa (Chenopodium quinoa Willd.) çeşitlerinin çimlenme özellikleri üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 89-99.
Labouriau, L. G., & Valadares, M. E. B. (1976). On the germination of seeds Calotropis procera (Ait.) Ait. f. Anais da Academia Brasileira de Ciências, 48(2), 263-284.
Labourıau, L.G. 1983. A germinação das sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.
Li, Y. (2008). Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan journal of biological sciences: PJBS, 11(9), 1268-1272.
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor.
Meyer, S. E., & Monsen, S. B. (1992). Big sagebrush germination patterns: subspecies and population differences. Rangeland Ecology & Management/Journal of Range Management Archives, 45(1), 87-93.
Mousavi, M., & Omidi, H. (2019). Seed priming with bio-priming improves stand establishment, seed germination and salinity tolerance in canola cultivar (Hayola 401). Iranian Journal of Plant Physiology, 9(3), 2807-2817.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681.
Mushtaq, N. U., Saleem, S., Rasool, A., Shah, W. H., Hakeem, K. R., & Rehman, R. U. (2021). Salt stress threshold in millets: perspective on cultivation on marginal lands for biomass. Phyton, 90(1), 51.
Nagaveni, S. R. V., Reddy, P. S. S., Sadarunnisa, S., Padmaja, V. V., & Kiran, Y. D. (2022). Effect of salinity (NaCl) stress on seed germination and seedling vigour of okra (Abelmoschus esculentus L.) cultivars.
Naqve, M., Wang, X., Shahbaz, M., Fiaz, S., Naqvi, W., Naseer, M., ... & Ali, H. (2021). Foliar spray of alpha-tocopherol modulates antioxidant potential of okra fruit under salt stress. Plants, 10(7), 1382.
Omidi, H., Naghdi Badi, H. A., & Jafarzadeh, L. (2014). Seeds of medicinal plants and crops. Natural Resources and Environment, 269-189.
Özyazici, G., Açikbaş, Ö. Ü. S., & Özyazici, M. A. (2024). Sinir Otu (Plantago Ovata L.) Tohumlarına Borik Asit Priming Uygulamalarinin Bazi Çimlenme Ve Fide Özelliklerine Etkisi.
Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant physiology, 141(3), 910-923.
Ranal, M. A., & Santana, D. G. D. (2006). How and why to measure the germination process?. Brazilian Journal of Botany, 29, 1-11.
SAS 9.0, SAS Institute Inc., Cary, NC, USA. (2004). Leading Statistical Analysis Software, SAS/STAT |SAS 9.0, SAS Institute Inc., Cary, NC, USA. https://www.sas.com/tr_tr/software/stat.html
Scott, S. J., Jones, R. A., & Williams, W. (1984). Review of data analysis methods for seed germination 1. Crop science, 24(6), 1192-1199.
Shmueli, M., & Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22: 123–131.
Singh, J., & Sharma, P. C. (2016). Comparative effects of soil and water salinity on oil quality parameters of Brassica juncea. Journal of Oilseed Brassica, 7(1), 29-37.
Somagh, H. A., Mousavi, S. M., Omidi, H., Mohammadian, E., & Hemmati, M. (2017). Canola seed germination and seedling growth in response to saline condition and bio-priming. Iran J. Plant Physiol, 7, 2149-2156.
Timson, J. (1965). New method of recording germination data. Nature, 207(4993), 216-217.
Ulas, A., Aydin, A., Ulas, F., Yetisir, H., & Miano, T. F. (2020). Cucurbita rootstocks improve salt tolerance of melon scions by inducing physiological, biochemical and nutritional responses. Horticulturae, 6(4), 66.
Ulas, F. (2021). Effects of grafting on growth, root morphology and leaf physiology of pepino (Solanum muricatum Ait.) as affected by salt stress under hydroponic conditions. International Journal of Agriculture Environment and Food Sciences, 5(2), 203-212.
Ulaş, F. (2022). Leaf and root-growth characteristics contributing to salt tolerance of backcrossed pepper (Capsicum annuum L.) progenies under hydroponic conditions. International Journal of Agriculture Environment and Food Sciences, 6(1), 91-99.
Ulas, F., Aydın, A., Ulas, A., & Yetisir, H. (2019). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European Journal of Sustainable Development, 8(1), 201-201.
Ulas, F., Birer, E. S., & Ulaş, A. (2024a). Bazı yerel fasulye (Phaseolus vulgaris L.) ve nohut (Cicer arietinum L.) genotiplerinde farklı seviyelerdeki tuzluluğun çimlenme üzerine etkisi. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, 4(2), 41-56.
Ulas, F., Hama, Ameen, H.H.H.H. and Ulas, A. (2024b). Salt stress and its implications in vegetable crops with special reference to the Cucurbitaceae family. Annals of Arid Zone 63(4): 117-129 doi.org/10.56093/aaz.v63i4.155494
Ulaş, F., Yücel, Y. C., Ulaş, A., Haji Nour, S. A. M. (2025). Effects of salt stress on root architecture and development in okra (Abelmoschus esculentus). In Proceedings of the 3rd International Ankara Scientific Studies Congress (ARCENG 2025), 1–2 March 2025 (pp. 88-16) ISBN: 978-625-97514-4-3. .
Wani, M. R., & Singh, S. S. (2016). Correlation dynamics of germination value, germination energy index and germination speed of Pongamia pinnata (L.) Pierre seeds of Pendra Provenance, Chhattisgarh, India. International Journal of Research, 28, 28-32.
Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71.
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2025 As per Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






