Dietary Supplementation of Monensin for Methane Mitigation in Non Pregnant Non Lactating Murrah Buffaloes


91 / 69

Authors

  • shiva gupta

Keywords:

Enteric Methane, Buffalo, Monensin

Abstract

ABSTRACT- The present study was conducted to evaluate the effect of dietary monensin supplementation on nutrient utilization and enteric methane emission in non pregnant non lactating Murrah buffaloes. Fourteen dry Murrah buffaloes were randomly divided into two groups of seven animals each based on body weight. Both groups were fed as per ICAR, (2013) without and with monensin supplementation (350 mg/head/day) in control and treatment group, respectively for sixty days. The daily nutrient intake (kg/d) and apparent digestibility (%) of nutrients were similar (P>0.05) in both the groups. However, Enteric CH4 emissions (g/d) was found to be reduced by 10.09% in monensin supplemented group as compared to control and lowered (P<0.05) by 6.34% for g/kg dry matter intake (19.78 Vs 21.12) in monensin supplemented group as compared to control. Methane energy loss as % of grass energy (GE), digestible energy (DE) and metabolizable energy (ME) was reduced (P<0.05) in monensin supplemented group by 6.36, 9.24 and 9.79%, respectively. In conclusion, dietary monensin supplementation to non pregnant non lactating Murrah Buffaloes could reduce enteric methane emissions without affecting nutrient intake and nutrient digestibility which will reduce the contribution of buffaloes to the global methane inventory and its negative impact on environment.

References

Allen, J. D. and Harrison, D. G. 1979. The effect of the dietary addition of monensin upon digestion in the stomachs of sheep. Proc. Nutr. Soc.,Vol. 38.

AOAC. 2005. Official Methods of Analysis, 18th ed. Association of Offficial Analytical Chemists, Washington, DC, USA.

Beauchemin, K. A. and McGinn, S. M. 2006. Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci., 84(6): 1489-1496.

Benchaar, C. 2016. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows. Animal., 10(3): 418–425.

Benchaar, C., Duynisveld, J. L. and Charmley, E. 2006. Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci. 86: 91–96.

Das, L. K., Kundu, S. S., Kumar, D. and Datt, C. 2014. Assessment of Energy Content of Some Tropical Concentrate Feeds of Ruminants using Model of National Research Council – 2001. Indian J. Sci. Technol., 7(12): 204-212.

De, D., Mohini, M. and Singh, G. P. 2012. Influence of monensin enriched UMMB feeding on in vivo methane emission in crossbred calves fed on wheat straw and concentrate based diet. Indian J. Anim. Sci., 82(6): 640–644.

Duffield, T. F.,Merrill, J. K. and Bagg, R. N. 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci., 90: 4583-4592.

Erickson, P. S., Davis, M. L., Murdock, C. S., Pastir, K. E., Murphy, M. R., Schwab, G. C. and Marden, J. I. 2004. Ionophore taste preferences of dairy heifers. J. Anim. Sci., 82: 3314-3320.

FAO. 2006. Steinfeld, H., Gerber, P., Wassenaar, T., Caste,l V., Rosales, M. And de Haan, C. (eds) Livestock’s long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, ISBN: 978-92-5-105571-7.

Funk, M. A., Galyean, M. L. and Ross, T. T. 1986. Potassium and lasalocid effects on performance and digestion in lambs. J. Anim. Sci., 63: 685-691.

Goodrich, R. D., Garrett, J. E., Gast, D. R., Kirick, M. A., Larson, D. A. and Meiske, J. C. 1984. Influence of monensin on the performance of cattle. J. Anim. Sci., 58:1484–1498.

Guan, H., Wittenberg, K. M., Ominski, K. H. and Krause, D. O. 2014. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci., 84:1896-1906.

Johnson, K. A., Huyler, M. T., Westburg, H. H., Lamb, B. R. and Zimmerman, P. 1994. Measurement of methane emission from ruminat livestock using a SF6 technique. Environ. Sci. Tech., 28: 113-128.

Khorrami, B., Vakili, A. R., Danesh Mes- garan, M. and Klevenhusen, F. 2015. Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production sys- tems. Anim. Feed Sci. Technol., 200: 8–16.

Lamba, J. S., Grewal, R. S., Ahuja, C. S., Malhotra, P. and Tyagi, N. 2013. Effect of Monensin on the Milk Production, Milk Composition, Rumen Metabolism and Blood Biochemical Profile in Crossbred Cows. Indian J. Anim. Nutr., 30(1): 38-42.

Lemenager, R. P., Owens, F. N., Shockey, B. J., Lusby, K. S. and Totusek, R. 1978. Monensin effects on rumen turnover rate, twenty-four hour VFA pattern, nitrogen components and cellulose disappearance. J. Anim. Sci., 47: 255-261.

Martineau, R., Benchaar, C., Petit, H. V., Lapierre, H., Ouellet, D. R., Pellerin, D. and Berthiaume, R. 2007. Effects of Lasalocid or Monensin Supplementation on Digestion, Ruminal Fermentation, Blood Metabolites, and Milk Production of Lactating Dairy Cows. J. Dairy Sci., 90: 5714–5725.

Moss, A. R., Glvens, D. I. and Garnsworthy, P. C. 1995. The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Anim. Feed Sci. Technol., 55: 9-33.

NRC, 2000. Nutrient requirements of beef cattle Updated. 7th ed. National Academy Press; Washington, DC.

Oliveira, M. V. M., Lana, R. P. L., Eifert, E. C., Luz, D. F., Pereira, J. C., Pérez, J. R. O. and Junior, F. M. V. 2007. Effect of monensin on intake and apparent digestibility of nutrients in sheep fed diets with different crude protein levels. Rev. Bras. Zootec., 36(3): 643-651.

Orskov, E. R., Macleod, N. A. and Nakashima, Y. 1991. Effect of different volatile fatly acid mixtures on energy metabolism in cattle. J. Anim. Sci., 69: 3389-3391.

Osborne, J. K., Mutsvangwa, T., Azahal, O., Duffield, T. F., Bagg, R., Dick, P., Vassie, G. and McBride, B. W. 2004. Effect of monensin on ruminal forage degradability and total tract diet digestibilityin lactating dairy cows during grain induced sub acute ruminal acidosis. J.Dairy Sci., 87: 2137-2794.

Planning Commission. 2012. Report of the working group on animal husbandary and dairying 12th five year plan (2012-2017). Goverment of India.

Prusty, S. 2015. Metabolizable protein and energy requirements for buffalo calves fed on low methane producing rations. Ph.D. thesis, NDRI, Deemed University, Karnal (Haryana), India.

Ramin, M. 2013. Predicting Methane Production in Dairy Cows. Ph.D. thesis. Swedish University of Agricultural Sciences Umea. Sweden.

Reed, B. K. and Whisnant, C. S. 2001. Effects of monensin and forage: concentrate ratio on feed intake, endocrine, and ovarian function in beef heifers. Anim. Reprod. Sci., 67: 171–180.

Rodehutscord, M. 2013. Effects of monensin and tannin extract supplementation on methane production and other criteria of rumen fermentation in vitro and in long-term studies with sheep. Dissertation. Universität Hohenheim.

Russell, J. B. and Houlihan, A. J. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev., 27(1): 65–74.

Russell, J. B. and Strobel, H. J. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol., 55(1): 1–6.

Sharma, N. 2017. Metabolic profiling and nutrient utilization in transition cows fed DCAD based diet supplemented with oil and polyherbal preparation. M.V.Sc thesis. NDRI, Deemed University, Karnal (Haryana), India.

Singh, G. P. and Mohini, M. 1999. Effect of different levels of rumensin in diet on rumen fermentation, nutrient digestibility and methane production in cattle. Asian. Aus. J. Anim. Sci., 10: 14-19.

Singhal, K. K., Mohini, M., Jha, A. K. and Gupta, P. K. 2005 Methane emission estimates from enteric fermentation in Indian livestock: Dry matter intake approach. Curr. Sci., 88(1): 119-127.

Sirohi, S., Michaelowa, A. and Sirohi, S. K. 2007. Mitigation options for enteric methane emissions from Dairy animals: an evaluation for potential CDM Projects in India. Mitigation and Adaptation Strategies for Global Change.12: 259–274.

Sontakke, U. 2015. Metabolizable protein and energy requirements for lactating buffaloes fed on Silage based diets. Ph.D. thesis, NDRI, Karnal.

Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.

Downloads

Submitted

16-06-2018

Published

29-08-2018

Issue

Section

Ruminant

How to Cite

gupta, shiva. (2018). Dietary Supplementation of Monensin for Methane Mitigation in Non Pregnant Non Lactating Murrah Buffaloes. Indian Journal of Animal Nutrition, 35(3). https://epubs.icar.org.in/index.php/IJAN/article/view/80715