Nitrogen remobilization and its importance in nitrogen use efficiency (NUE) of crops


Abstract views: 330 / PDF downloads: 77

Authors

  • BIRENDRA KUMAR PADHAN Ph D Scholar, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • LEKSHMY SATHEE Senior Scientist, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • VANITA JAIN Education Division, KAB- II, Indian Council of Agricultural Research, New Delhi 110 012, India;

https://doi.org/10.56093/ijas.v90i12.110299

Keywords:

Autophagy (ATG), Glutamine synthetase (GS), Nitrate transporters, N remobilization efficiency (NRE), NUE, Senescence associated genes (SAG)

Abstract

Nitrogen (N) remobilization during grain filling from pre-anthesis N uptake and stored in different tissues of crop N use efficiency (NUE). N is remobilized from to sink (young leaves or grains) with the help of nitrate/amino acid transporters. Nearly 80% of grain N in cereals is derived from N remobilized from vegetative tissues. Remobilization of N within the plant takes place from older leaves to young leaves, leaves to grains, senescing organs to grains, from storage parts to grains. Enzymes involved in N remobilization include glutamine synthetase (GS), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and proteases. Among them, cytosolic GS plays a key role during N remobilization in cereals. There are various senescence-associated genes (SAG) involved in N remobilization from older degrading leaves to younger leaves and grains. Autophagy (ATG) is an important mechanism involved in the degradation of stored N in the form of various proteins to amino acids, which are transported to long-distance in the form of glutamine and asparagine via phloem tissue. There is a complex network of genes, mechanisms, and factors associated with N remobilization, which needs to be considered for improving NUE of crops.

Downloads

Download data is not yet available.

References

Avice J Cand Etienne P. 2014. Leaf senescence and N remobilization efficiency in oilseed rape Brassica napus L. Journal of Experimental Botany 6514: 3813–3824. DOI: https://doi.org/10.1093/jxb/eru177

Bachmann M, Huber J L, Liao P C, Gage D A and Huber S C. 1996. The inhibitor protein of phosphorylated nitrate reductase from spinach. Spinacia oleracea leaves is a 14-3-3 protein. FEBS Letters 3872-3 127–131. DOI: https://doi.org/10.1016/0014-5793(96)00478-4

Bao W, Kojima K K and Kohany O. 2015. Repbase update a database of repetitive elements in eukaryotic genomes. Mobile DNA 61: 11. DOI: https://doi.org/10.1186/s13100-015-0041-9

Basra A S and Goyal S S. 2002. Mechanisms of improved NUE in cereals. Quantitative Genetics Genomics and Plant Breeding 269. DOI: https://doi.org/10.1079/9780851996011.0269

Bernhard W R and Matile P. 1994. Differential expression of glutamine synthetase genes during the senescence of Arabidopsis thaliana rosette leaves. Plant Science 981: 7–14. DOI: https://doi.org/10.1016/0168-9452(94)90142-2

Buchanan-Wollaston V and Ainsworth C. 1997. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridization. Plant Molecular Biology 335: 821–834. DOI: https://doi.org/10.1023/A:1005774212410

Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet‐Mercey S and Meyer C. 2009. The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant Journal 573: 426–435. DOI: https://doi.org/10.1111/j.1365-313X.2008.03695.x

Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J and Daniel-Vedele . 2007. The Arabidopsis ATNRT2 7 nitrate transporter controls nitrate content in seeds. Plant Cell 195: 1590–1602. DOI: https://doi.org/10.1105/tpc.107.050542

Cliquet J B, Deleens E and Mariotti A. 1990. C and N mobilization from stalk and leaves during kernel filling by 13C and 15N tracing in Zea mays L. Plant Physiology 944: 1547–1553. DOI: https://doi.org/10.1104/pp.94.4.1547

Cox M C, Qualset C O and Rains D W. 1985. I Genetic variation for N assimilation and translocation in wheat. II N assimilation in relation to grain yield. Crop Science 253: 435–440. DOI: https://doi.org/10.2135/cropsci1985.0011183X002500030003x

Curci P L, Cigliano R A, Zuluaga D L, Janni M, Sanseverino W and Sonnante G. 2017. Transcriptomic response of durum wheat to N starvation. Scientific Reports 71: 1176. DOI: https://doi.org/10.1038/s41598-017-01377-0

Das S, Parida S K, Agarwal P and Tyagi A K. 2019. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. Planta: 1–17. DOI: https://doi.org/10.1007/s00425-019-03268-2

De Angeli A, Monachello D, Ephritikhine G, Frachisse J M, Thomine S, Gambale F and Barbier-Brygoo H. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 4427105: 939. DOI: https://doi.org/10.1038/nature05013

Diaz C, Lemaitre T, Christ A, Azzopardi M, Kato Y, Sato F and Masclaux-Daubresse C. 2008. N recycling and remobilization are differentially controlled by leaf senescence and development stage in arabidopsis under low N nutrition. Plant Physiology 1473: 1437–1449. DOI: https://doi.org/10.1104/pp.108.119040

DuPont F M and Altenbach S B. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science 382: 133–146. DOI: https://doi.org/10.1016/S0733-5210(03)00030-4

Fageria N K and Baligar V C. 2005. Enhancing NUE in crop plants. Advances in Agronomy 88: 97–185. DOI: https://doi.org/10.1016/S0065-2113(05)88004-6

Feller U and Fischer A. 1994. N metabolism in senescing leaves. Critical Reviews in Plant Sciences 133: 241–273. DOI: https://doi.org/10.1080/07352689409701916

Fischer A M and Gan S. 2007. Nutrient remobilization during leaf senescence. Annual Reviews of Senescence Processes in Plants 26: 87–107. DOI: https://doi.org/10.1002/9780470988855.ch5

Fischer A and Feller U. 1994. Senescence and protein degradation in leaf segments of young winter wheat: influence of leaf age. Journal of Experimental Botany 451: 103–109. DOI: https://doi.org/10.1093/jxb/45.1.103

Forde B G and Lea P J. 2007. Glutamate in plants: metabolism regulation and signalling. Journal of Experimental Botany 589: 2339–2358. DOI: https://doi.org/10.1093/jxb/erm121

Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J and Hubbart S. 2011. Identification of traits to improve the NUE of wheat genotypes. Field Crops Research 1232: 139–152. DOI: https://doi.org/10.1016/j.fcr.2011.05.010

Garbarino J E, Oosumi T and Belknap W R. 1995. Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiology 1094: 1371–1378. DOI: https://doi.org/10.1104/pp.109.4.1371

Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer W B and von Wiren N. 1999. Three functional transporters for constitutive diurnally regulated and starvation induced DOI: https://doi.org/10.2307/3870826

uptake of ammonium into arabidopsis roots. Plant Cell 115: 937–947.

Geng J and Klionsky D J. 2008. The Atg8 and Atg12 ubiquitin like conjugation systems in macro autophagy. EMBO Reports 99: 859–864. DOI: https://doi.org/10.1038/embor.2008.163

Granstedt R C and Huffaker R C. 1982. Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiology 702 : 410–413. DOI: https://doi.org/10.1104/pp.70.2.410

Guiboileau A, Yoshimoto K, Soulay F, Bataille M P, Avice J C and Masclaux-Daubresse C. 2012. Autophagy machinery controls N remobilization at the whole plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytologist 1943: 732–740. DOI: https://doi.org/10.1111/j.1469-8137.2012.04084.x

Guo Y and Gan S. 2006. AtNAP a NAC family transcription factor has an important role in leaf senescence. Plant Journal 464: 601–612. DOI: https://doi.org/10.1111/j.1365-313X.2006.02723.x

Hanfrey C, Fife M and Buchanan-Wollaston V. 1996. Leaf senescence in Brassica napus: expression of genes encoding pathogenesis related proteins. Plant Molecular Biology 303: 597–609. DOI: https://doi.org/10.1007/BF00049334

Hensel L L Grbic V Baumgarten D A and Bleecker A B 1993 Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 55: 553–564 DOI: https://doi.org/10.1105/tpc.5.5.553

Herridge D F, Atkins C A, Pate J S and Rainbird R M. 1978. Allantoin and allantoic acid in the N economy of the cowpea Vigna unguiculata L. Plant Physiology 624: 495–498. DOI: https://doi.org/10.1104/pp.62.4.495

Hirel B, Tetu T, Lea P J and Dubois F. 2011. Improving NUE in crops for sustainable agriculture. Sustainability 39: 1452–1485. DOI: https://doi.org/10.3390/su3091452

Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A and Koch W. 2006 Arabidopsis LHT1 is a high affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 188: 1931–1946. DOI: https://doi.org/10.1105/tpc.106.041012

Huber S C, Bachmann M and Huber J L. 1996. Post-translational regulation of nitrate reductase activity: a role for Ca2+ and 14- 3-3 proteins Trends in Plant Science 112: 432–438. DOI: https://doi.org/10.1016/S1360-1385(96)10046-7

Izumi M, Wada S, Makino A and Ishida H. 2010. The autophagic degradation of chloroplasts via rubisco containing bodies is specifically linked to leaf carbon status but not N status in Arabidopsis. Plant Physiology 1543: 1196–1209. DOI: https://doi.org/10.1104/pp.110.158519

Jain V, Kaiser W and Huber S C. 2008. Cytokinin inhibits the proteasome-mediated degradation of carbonylated proteins in Arabidopsis leaves. Plant and Cell Physiology 495 843–852. DOI: https://doi.org/10.1093/pcp/pcn060

Joppa L R, Du C, Hart G E and Hareland G A. 1997. Mapping genes for grain protein in tetraploid wheat Triticum turgidum L using a population of recombinant inbred chromosome lines. Crop Science 375: 1586–1589. DOI: https://doi.org/10.2135/cropsci1997.0011183X003700050030x

Kamachi K, Yamaya T, Hayakawa T, Mae T and Ojima K. 1992. Vascular bundle specific localization of cytosolic glutamine synthetase in rice leaves. Plant Physiology 994: 1481–1486. DOI: https://doi.org/10.1104/pp.99.4.1481

Kant S. 2018. Understanding nitrate uptake signaling and remobilization for improving plant NUE. Seminars in Cell and Developmental Biology, Vol 74, pp 89-96. Academic Press. DOI: https://doi.org/10.1016/j.semcdb.2017.08.034

Kawakami N and Watanabe A. 1988. Senescence specific increase in cytosolic glutamine synthetase and its mRNA in radish cotyledons. Plant Physiology 884: 1430–1434. DOI: https://doi.org/10.1104/pp.88.4.1430

Keys A J. Bird I F. Cornelius M J. Lea P J. Wallsgrove R and Miflin B J. 1978. Photorespiratory N cycle. Nature 2755682: 741. DOI: https://doi.org/10.1038/275741a0

Kiba T. Feria-Bourrellier A B. Lafouge F. Lezhneva L. Boutet- Mercey S. Orsel M and Krapp A. 2012. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of N starved plants. Plant Cell 241: 245–258. DOI: https://doi.org/10.1105/tpc.111.092221

Kong L. Guo H and Sun M. 2015. Signal transduction during wheat grain development. Planta 2414: 789–801. DOI: https://doi.org/10.1007/s00425-015-2260-1

Kraiser T. Gras D E. Gutierrez A G. Gonzalez B and Gutierrez R A. 2011. A holistic view of N acquisition in plants. Journal of Experimental Botany 624: 1455–1466. DOI: https://doi.org/10.1093/jxb/erq425

Krapp A. David L C. Chardin C. Girin T. Marmagne A. Leprince A S and Daniel-Vedele F. 2014 Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 653: 789–798. DOI: https://doi.org/10.1093/jxb/eru001

Lea P J and Miflin B J. 2003. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiology and Biochemistry 416-7: 555–564. DOI: https://doi.org/10.1016/S0981-9428(03)00060-3

Lehmeier C A. Wild M and Schnyder H. 2013. N stress affects the turnover and size of N pools supplying leaf growth in a grass. Plant physiology 1624: 2095–2105. DOI: https://doi.org/10.1104/pp.113.219311

Leran S. Garg B. Boursiac Y. Corratge-Faillie C. Brachet C. Tillard P and Lacombe B. 2015. AtNPF5 5 a nitrate transporter affecting N accumulation in Arabidopsis embryo. Scientific Reports 5: 7962. DOI: https://doi.org/10.1038/srep07962

Lezhneva L. Kiba T. Feria-Bourrellier A B. Lafouge F. Boutet- Mercey S. Zoufan P and Krapp A. 2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in N-starved plants. Plant Journal 802: 230–241. DOI: https://doi.org/10.1111/tpj.12626

Li H. Yu M. Du X Q. Wang Z F. Wu W H. Quintero F J and Wang Y. 2017. NRT1.5/NPF7.3 functions as a proton-coupled H+/ K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell 298: 2016–2026. DOI: https://doi.org/10.1105/tpc.16.00972

Li X. Li N and Xu F. 2019. Increased autophagy of rice can increase yield and NUE. Frontiers in Plant Science 10 584. DOI: https://doi.org/10.3389/fpls.2019.00584

Li S, Wang Z and Stewart BA. 2013. Responses of crop plants to ammonium and nitrate N. Advances in Agronomy 118, 205e393. DOI: https://doi.org/10.1016/B978-0-12-405942-9.00005-0

Lim Y Y and Quah E P L. 2007. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chemistry 1033: 734–740. DOI: https://doi.org/10.1016/j.foodchem.2006.09.025

Limami A M, Rouillon C, Glevarec G, Gallais A,and Hirel B. 2002. Genetic and physiological analysis of germination efficiency in maize in relation to N metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiology 1304: 1860–1870. DOI: https://doi.org/10.1104/pp.009647

Lin S H, Kuo H F, Canivenc , Lin C S, Lepetit M, Hsu P K and Gojon A. 2008. Mutation of the Arabidopsis NRT1 5 nitrate transporter causes defective root-to-shoot nitrate. Plant Cell 209: 2514–2528. DOI: https://doi.org/10.1105/tpc.108.060244

Liu J, Wu Y H, Yang J J, Liu Y D and Shen F F. 2008. Protein degradation and N remobilization during leaf senescence. Journal of Plant Biology 511: 11–19. DOI: https://doi.org/10.1007/BF03030735

Lohman K N, Gan S, John M C and Amasino R. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiologia Plantarum 922: 322–328. DOI: https://doi.org/10.1034/j.1399-3054.1994.920218.x

Loudet O, Chaillou S, Merigout P, Talbotec J and Daniel-Vedele F. 2003. Quantitative trait loci analysis of NUE in Arabidopsis. Plant Physiology 1311: 345–358. DOI: https://doi.org/10.1104/pp.102.010785

Luquez V M, Sasal Y, Medrano M, Martin M I, Mujica M and Guiamet J J. 2006. Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis. thaliana. Journal of Experimental Botany 576: 1363–1372. DOI: https://doi.org/10.1093/jxb/erj112

Mickelson S, See D, Meyer F D, Garner J P, Foster C R, Blake T K and Fischer A M. 2003. Mapping of QTL associated with N storage and remobilization in barley Hordeum vulgare L leaves. Journal of Experimental Botany 54383: 801–812. DOI: https://doi.org/10.1093/jxb/erg084

Moorhead G B Trinkle-Mulcahy L and Ulke-Lemee A. 2007. Emerging roles of nuclear protein phosphatases. Nature Reviews DOI: https://doi.org/10.1038/nrm2126

Downloads

Submitted

2021-02-09

Published

2021-02-10

Issue

Section

Review Article

How to Cite

PADHAN, B. K., SATHEE, L., & JAIN, V. (2021). Nitrogen remobilization and its importance in nitrogen use efficiency (NUE) of crops. The Indian Journal of Agricultural Sciences, 90(12), 2251-2261. https://doi.org/10.56093/ijas.v90i12.110299
Citation