Effect of heat stress on physio-biochemical characteristics of chickpea (Cicer arietinum) genotypes


Abstract views: 323 / PDF downloads: 147

Authors

  • NAND LAL MEENA Indian Agricultural Research Institute, New Delhi 110 012 India
  • KISHWAR ALI Indian Agricultural Research Institute, New Delhi 110 012 India
  • P S DEHMUKH Indian Agricultural Research Institute, New Delhi 110 012 India
  • ARUNA TYAGI Indian Agricultural Research Institute, New Delhi 110 012 India

https://doi.org/10.56093/ijas.v84i3.38592

Keywords:

Antioxidant enzymes, Chlorophyll content, Dry matter, Leaf area, Membrane stability index, Protein profile, Relative water content

Abstract

A study was conducted with three chickpea genotypes Pusa 256, RSG 888 and JG 11 to study the effect of high temperature stress on various physiological and biochemical parameters. In all the chickpea genotypes high temperature stress decreased RWC, MSI, Chl content, dry matter, leaf area and increased activity of antioxidant enzymes such as POX, GR, and SOD. RSG 888 possessed better seedling growth parameters under high temperature as compared to Pusa 256 and JG 11.

Downloads

Download data is not yet available.

References

Almeselmani M, Deshmukh P S, SiramR K, Kushwaha S R and Singh T P. 2006. Protective role of antioxidant enzymes under high temperature stress.Plant Science 171: 382–8. DOI: https://doi.org/10.1016/j.plantsci.2006.04.009

Babani F, Ylli A and Lichtenthaler H K. 2003. Optical properties of leaves on some wheat genotypes. (In) Fifth General Conference of the Balkan Physical Union, 25–29 August, 2003. VrnjackaBanja, Serbia and Montenegro, SP15–037.

Barrs H D and Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves.Australian Journal ofBiological Sciences 15: 413–28. DOI: https://doi.org/10.1071/BI9620413

Camejo D, Rodrýguez P, Morales M A, Dellamico J M, Torrecillas A, Alarcon J . 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal Plant Physiology 162: 281–9. DOI: https://doi.org/10.1016/j.jplph.2004.07.014

Castillo F I, Panel I and Greppin H. 1984. Peroxidase release induced by ozone in Sodium album leaves. Plant physiology 74: 846–51. DOI: https://doi.org/10.1104/pp.74.4.846

Collins N C, Tardieu F and Tuberosa R. 2008. Quantitative trait loci and crop performance under abiotic stress:Where do we stand. Plant Physiology 147: 469–86. DOI: https://doi.org/10.1104/pp.108.118117

Deshmukh P S, Sairam R K, Kushwaha S R, Singh T P, Moaed A and Choadhary H B. 2006. Physio-genetic approaches for increasing wheat productivity under rice-wheat cropping system. Indian Journal of Agriultural Sciences 76 (11): 667–9.

Dhindsa R A, Plumb-Dhindsa P and Thorpe T A. 1981. Leaf senescence: Correlated with increased permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 126: 93–101. DOI: https://doi.org/10.1093/jxb/32.1.93

Dominguez-Solis J R, He Z, Lima A, Ting J, Buchanan B B and Luan S. 2008. A cyclophilin links redox and light signals to cysteine bioasynthesis and stress responses in chloroplasts. Proceedings in National Academy of Sciences (USA) 105: 16 386–91. DOI: https://doi.org/10.1073/pnas.0808204105

FAOSTAT. 2005. FAOSTAT data. http://faostat.fao.org/faostat/ collections?Subset=agriculture. Last updated July 2010.

Foyer C H, Lelandais M, Edwards E A and Mullineaux P M. 1993. Active Oxygen, Oxidative Stress and Plant Metabolism:Current Topics in Plant Physiology, pp 131–44. Pell E and Steffen K (Eds). American Socirty of Plant Physiologists, Rockville, MD.

Gonzalez L and Gonzalez-Vila M. 2001. Determination of Relative Water Content. (In) Handbook of Plant Ecophysiology Techniques, pp 207–12. Roger M J R (Ed). Springer, Netherlands. DOI: https://doi.org/10.1007/0-306-48057-3_14

Gulen H, Cetinkaya C, Kadýoglu M, Kesici M, Cansev A and Eris A. 2008. Peroxidase activity and lipid peroxidation in strawberry (Fragaria × ananassa) plants under low temperature. Journal of Biological Environmental Science 2(6): 95–100.

Hiscox J D and lsraelstam G E. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332–4. DOI: https://doi.org/10.1139/b79-163

Kaur H, Gupta A K and Kaur N. 2009. Differential response of the antioxidant system in wild and cultivated genotypes of chickpea.Plant Growth Regulation 57: 109–14. DOI: https://doi.org/10.1007/s10725-008-9332-1

Larkindale J and Huang B. 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass.Plant Growth Regulation 47: 17–28. DOI: https://doi.org/10.1007/s10725-005-1536-z

Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Sciences 11: 15–9. DOI: https://doi.org/10.1016/j.tplants.2005.11.002

Moller I M, Jensen P E and Hansson A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459–81. DOI: https://doi.org/10.1146/annurev.arplant.58.032806.103946

Nagarajan S and Nagarajan S. 2010. Abiotic tolerance and crop improvement. (In) Abiotic Stress Adaptation in Plants, pp 1–11. DOI: https://doi.org/10.1007/978-90-481-3112-9_1

Pareek A, Sopory S K, Bohnert H J and Govindjee (Eds). A Springer publication, The Netherlands.

Noctor G, De P R and Foyer C H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends in Plant Sciences 12: 125–34. DOI: https://doi.org/10.1016/j.tplants.2007.01.005

Premchandra G S, Sanoeba H and Ogata S.1990. Cell membrane stability an indicator of drought tolerance is affected by applied nitrogen in 10 g bean. Journal of Agricultural Science 15: 63– 6. DOI: https://doi.org/10.1017/S0021859600073925

Priyanka B, Sekhar K, Sunita T, Reddy V D and Rao V K. 2010. Characterizarion of ESTs of pigeonpea and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Molecular Genetics and Genomics 283: 273–67. DOI: https://doi.org/10.1007/s00438-010-0516-9

Raison J K, Berry J A, Armond R A and Pike C S. 1980. Membrane properties in relation to the adaptation of plants to temperature stress. (In) Adaptation of Plants to Water and High Temperature Stress, pp 261–73. Turner N C and Kramer P J (Eds). John Wiley and Sons, New York.

Sairam R K and Dube S D. 1997. Effect of moisture stress on nitrate reductase activity in rice in relation to drought- tolerance.Indian Journal of Plant Physiology 27: 264–70.

Sairam R K, Tyagi A and Chinnusamy. 2006. Salinity tolerance: cellular mechanisms and gene regulation. (In) Plant Environment Interactions, pp 121–75. Huang B (Ed.). A CRC publication, Boca Raton, New York. DOI: https://doi.org/10.1201/9781420019346.ch6

Singh T P, Deshmukh P S, Mishra S K and Kushwaha S R. 2005. Effect of temperature regimes on physiological parameters in chickpea (Cicer arietinum L.). New Botanist 32: 225–35.

Smith I K, Vierheller T L and Thorne C A.1988. Assay of glutathione reductase in crude tissue homogenates using 5, 5'- dithiobis (2-nitrobenzoic acid). Analytical Biochemistry 175: 408–13. DOI: https://doi.org/10.1016/0003-2697(88)90564-7

Sullivan C Y and Ross W M. 1979. Selecting for drought and heat resistance in grain sorghum. (In) Stress Physiology in Crop Plants, pp 262–81. Mussell H and Staples R C (Eds.). Wiley Inter science, New York.

Tripathi N, Verma R S and Verma O. 2009. Effect of heat and moisture stress treatments on seedling growth of wheat (Triticum aestivum L.) varieties. Indian Journal of Agriultural Research 43(4): 257–262.

Turner N C, Abbo S, Berger J d, Chaturvedi S K, French R J, Ludwig C, Manner D M, Singh S J and Yadav H S. 2007. Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. Journal of Experimental Botany 58: 187–94. DOI: https://doi.org/10.1093/jxb/erl192

Upreti D C, Abrol Y P and Reddy V R. 2007. Crop responses to Elevated CO2 Biodiversity and its Significance, pp 289–33. Tandon P, Khatri S and Abrol YP (Eds). I K International ,New Delhi.

Wang J, Gan Y T and MacDonald C L. 2006. Response of chickpea yield to high temperature stress during reproductive development.Crop Science 46: 2 171–8. DOI: https://doi.org/10.2135/cropsci2006.02.0092

Downloads

Submitted

2014-03-04

Published

2014-03-04

Issue

Section

Articles

How to Cite

MEENA, N. L., ALI, K., DEHMUKH, P. S., & TYAGI, A. (2014). Effect of heat stress on physio-biochemical characteristics of chickpea (Cicer arietinum) genotypes. The Indian Journal of Agricultural Sciences, 84(3), 401–6. https://doi.org/10.56093/ijas.v84i3.38592
Citation