Wheat rust research—then and now


Abstract views: 411 / PDF downloads: 155

Authors

  • SUBHASH C BHARDWAJ ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh 171 002
  • PRAMOD PRASAD ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh 171 002
  • OM P GANGWAR ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh 171 002
  • HANIF KHAN ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh 171 002
  • SUBODH KUMAR ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh 171 002

https://doi.org/10.56093/ijas.v86i10.62092

Keywords:

Axenic culture, Black rust, Brown rust, Chromosomes, Epidemiology, Genome, Interaction, Management of wheat rusts, Resistance genes, Yellow rust

Abstract

Wheat is an important constituent of human diet worldwide. India is the second largest producer of wheat in the world and wheat is directly related to the economic health of country. To meet the food requirements of the growing population, there is a need to increase wheat production. Wheat rusts caused by a fungus Puccinia species are the main biotic constraints in our efforts to sustain and boost production. Wheat rusts are historic and devastating pathogens worldwide. Their ability to spread aerially over the continents, production of infectious pustules geometrically in trillions and evolving new physiologic forms, makes the management of wheat rusts a very challenging task. To counter the threat of wheat rusts, efforts are going on worldwide. Identification of pathotypes, anticipatory breeding, evaluation for rust resistance and deployment of rust resistant cultivars is a time tested strategy to manage wheat rusts. There had been continuous efforts to increase the diversity for rust resistance. A list of more than 210 rust resistance genes and associated markers for many are available for the use of breeders. However, many of them have lost the effectiveness over the years. Introgression of rust resistance from rye and later on from other sources opened new vistas in research. However, the rust pathogens out smarted and new virulent pathotypes emerged which could overcome the novel rust resistance genes. Emergence of Ug 99 type of virulences threatened the cultivation of wheat in 40% of the world's acreage. DNA fingerprinting, sequencing of wheat and rust genomes were the milestone pieces of research in the 21st century. Efforts are still needed in studying the perpetuation of wheat rusts, epidemiology and inventing next generation techniques to break the yield barriers and manage wheat rusts. Role of Berberis chinensis, B. holstii, B. koreana and B. vulgaris as alternate hosts to P. striiformis (yellow rust of wheat) was an important discovery in this respect. Consolidated information on wheat rust research conducted over the years has been reviewed in this publication.

Downloads

Download data is not yet available.

References

Anikster Y, Bushnell W R, Eilam T, Manisterski J and Roelfs A P. 1997. Puccinia recondita causing leaf rust on cultivated wheats, wild wheats, and rye. Canadian Jounal of Botany 75: 2 082–96. DOI: https://doi.org/10.1139/b97-919

Anonymous. 1982. Annual Report. Plant Breeding Institute, Univ. of Sydney, Sydney, Australia.

Anonymous. 2014. Progress Report of All India Coordinated Wheat & Barley Improvement Project 2013-14, Project Director’s Report, Directorate of Wheat Research, Karnal, India, p 120.

Ausemus E R, Harrington J B, Reitz L P and Worzella W W. 1946. A summary of genetic studies in hexaploid and tetraploid wheats. Journal of the American Society of Agronomy 38: 183–99.

Bariana H S and McIntosh R A. 1993. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476–82. DOI: https://doi.org/10.1139/g93-065

Bariana H S, Brown G N, Ahmed N U, Khatkar S, Conner R L, Wellings C R, Haley S, Sharp P J and Laroche A. 2002. Characterization of Triticum vavilovii- derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker assisted selection. Theoretical and Applied Genetics 104: 315–20. DOI: https://doi.org/10.1007/s001220100767

Bariana H, Bansal U, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N and McIntyre C. 2010. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176: 251–60. DOI: https://doi.org/10.1007/s10681-010-0240-x

Bariana H, Hayden M, Ahmed N, Sharp P, McIntosh R and Bell J. 2001. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Australian Journal of Agricultural Research 52: 1 247–55. DOI: https://doi.org/10.1071/AR01040

Bauer R, Begerow D, Sampaio J P, Weib M and Oberwinkler F. 2006.The simple-septate basidiomycetes: a synopsis. Mycological Progress 5: 41–66. DOI: https://doi.org/10.1007/s11557-006-0502-0

Beresford R M. 1982. Stripe rust (Puccinia striiformis) a new disease of wheat in New Zealand. Cereal Rusts Bulletin 10: 35–41.

Bhardwaj S C, Prashar M and Prasad P. 2014. Ug99-Future challenges. (In) Future Challenges in Crop Protection, pp 231–47. Goyal A and Manoharachary C (Eds). Springer Science and Business Media, New York, USA. DOI: https://doi.org/10.1007/978-1-4939-1188-2_8

Bhardwaj S C, Prashar M, Jain S K, Kumar S, Sharma Y P, Sivasamy M and Kalappanvar I K. 2010b. Virulence on Lr28 in wheat and its relation to prevalent pathotypes in India. Cereal Research Communication 38(1): 83–9. DOI: https://doi.org/10.1556/CRC.38.2010.1.9

Bhardwaj S C, Prashar M, Kumar S, Jain S K, Sharma Y P and Kalappanavar I K. 2011. Two new pathotypes 125R28 and 93R37 of Puccinia triticina on wheat from India and sources of resistance. Indian Phytopathology 64(3): 240–2.

Bhardwaj S C. 2013. Puccinia -Triticum interaction: an update. Indian Phytopathology 66(1): 14–9.

Bhardwaj S C Prashar M, Jain S K, Kumar Subodh and Datta D. 2010a. Adult plant resistance in some Indian wheat genotypes and postulation of leaf rust resistance genes. Indian Phytopathlogy 63(2): 174.

Biffen R H. 1905. Mendel’s law of inheritance and wheat breeding. Journal of Agriculture Science 1: 4–48. DOI: https://doi.org/10.1017/S0021859600000137

Boehm E W A, Wenstrom J C, McLaughlin D J, Szabo L J, Roelfs A P and Bushnell W R. 1992. An ultrastructural pachytene karyotype for Puccinia graminis f. sp. tritici. Canadian Journal of Botany 70: 401–13. DOI: https://doi.org/10.1139/b92-054

Bossolini E, Krattinger S G and Keller B. 2006. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat. Theoretical and Applied Genetics 113: 1 049– 62. DOI: https://doi.org/10.1007/s00122-006-0364-5

Botstein D, White R L, Skolnick M and Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Ammerican Journal of Human Genetics 32: 314–31.

Browder L E. 1973. Probable genotype of some Triticum aestivum ‘Agent’ derivatives for reaction to Puccinia recondita f. sp. tritici. Crop Science 13: 203–6. DOI: https://doi.org/10.2135/cropsci1973.0011183X001300020016x

Browder L E. 1980. A compendium of information about named genes for low reaction to Puccinia recondita in wheat. Crop Science 20: 775–7. DOI: https://doi.org/10.2135/cropsci1980.0011183X002000060024x

Buchenauer H. 1982. Chemical and biological control of cereal rust. (In) The Rust Fungi, pp 247–79. Scott and Chakravorty A K (Eds). Academic Press, London.

Backlund J E and Szabo L J. 1993. Physical characteristics of the genome of the phytopathogenic fungus Puccinia graminis. Current Genetics 23: 89–93. DOI: https://doi.org/10.1007/BF00324670

Burton P, Samborski D J and Dyck P L. 1969.Leaf rust resistance in some European varieities of wheat. Canadian Journal of Botany 47: 543–6. DOI: https://doi.org/10.1139/b69-075

Cantu D, Govindarajulu M, Kozik A, Wang M and Chen X. 2011. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Plos One 6(8): e24230. doi:10.1371/ journal.pone.0024230. DOI: https://doi.org/10.1371/journal.pone.0024230

Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S and Kiani S. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of National Academy of Sciences USA 110: 8 057–62. DOI: https://doi.org/10.1073/pnas.1217133110

Condit R and Hubbell S P. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34: 66–71. DOI: https://doi.org/10.1139/g91-011

Cooke D E L and Lees A K. 2004. Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology 53: 692–704. DOI: https://doi.org/10.1111/j.1365-3059.2004.01104.x

Cox T S, Gill B S and Sears R G. 1995. Notice and release of KS94WGRC32 leaf rust resistant hard red winter wheat germplasm. Annual Wheat Newsletter 41: 241.

Craigie J H. 1927a. Experiments on sex in rust fungi. Nature 120: 116–7. DOI: https://doi.org/10.1038/120116a0

de Oliveira B and Samborski D J. 1966. Aecial stage of Puccinia recondita on Ranunculaceae and Boraginaceae in Portugal. Proceedings of Cereal Rusts Conference 1964, pp. 133–50.

Dieguez M J, Altieri E, Ingala L R, Perera E, Sacco F and Naranjo T. 2006. Physical and genetic mapping of amplified fragment length polymorphisms and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat. Theoretical and Applied Genetics 112: 251–7. DOI: https://doi.org/10.1007/s00122-005-0122-0

Dubin H J and Torres E. 1981. Causes and consequences of the 1976-1977 wheat leaf rust epidemic in northwest Mexico. Annual Review of Phytopathology 19: 41–9. DOI: https://doi.org/10.1146/annurev.py.19.090181.000353

Duplessis S, Cuomo C A, Lin Y C, Aerts A and Tisserant E. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences USA. 10.1073/PNAS.1019315108. DOI: https://doi.org/10.1073/pnas.1019315108

Eriksson J and Henning E. 1896. Die Getreiderosle. Ihre Geschichte und Nalur sowie Massregein gegen dieselben. Norstedt P A and Saner, Stockholm, p 463.

Feuillet C, Messmer M, Schachermayr G and Keller B. 1995. Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.). Molecular and General Genetics 248: 553–62. DOI: https://doi.org/10.1007/BF02423451

Flavell A J, Knox M R, Pearce S R and Ellis T H. 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal 16: 643–50. DOI: https://doi.org/10.1046/j.1365-313x.1998.00334.x

Flor H H. 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653–69.

Flor H H. 1947. Inheritance of reaction to rust in flax. Journal of Agricultural Research 74: 241–62.

Flor H H. 1956. The complementary genic systems in flax and flax rust. Advances in Genetics 8: 29–54. DOI: https://doi.org/10.1016/S0065-2660(08)60498-8

Gassner G and Straib W. 1932. Die bestimmung der biologischen rassen des weizengelbrostes (Puccinia glumasum f. sp. tritici (Schmidt.) Erikss. und Henn.) Arbeiten der Biologischen Reichsanstalt fur Land und Forstwirtschaft 20: 141–63.

GOI. 2013. Government of India: Economic Survey 2012-2013. New Delhi: GOI Press.

Gupta P K, Varshney R K, Sharma P C and Ramesh B 1999. Molecular markers and their applications in wheat breeding. Plant Breeding 118: 369–90. DOI: https://doi.org/10.1046/j.1439-0523.1999.00401.x

Gupta S K, Charpe A, Prabhu K V and Haque Q M R. 2006. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theoretical and Applied Genetics 113: 1 027–36. DOI: https://doi.org/10.1007/s00122-006-0362-7

Hare R A and McIntosh R A. 1979. Genetic and cytogenetic studies of the durable adult plant resistance in ‘Hope’ and related cultivars to wheat rusts. Zeitschrift fur Pflanzenzuchtung 83: 350–67.

Hayden M J, Stephenson P, Logojan A M, Khatkar D, Rogers C, Elsden J, Koebner R M D, Snape J W and Sharp P J. 2006. Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 113: 1 271–81. DOI: https://doi.org/10.1007/s00122-006-0381-4

Herrera-Foessel S A, Singh R P, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V and Lagudah E S. 2014. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and applied genetics 127: 781–9. DOI: https://doi.org/10.1007/s00122-013-2256-9

Hiebert C W, Fetch T G Jr and Zegeye T. 2010. Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theoretical and Applied Genetics 121: 65–9, 117. DOI: https://doi.org/10.1007/s00122-010-1291-z

Hiebert C W, Thomas J B, Somers D J, McCallum B D and Fox S L. 2007. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theoratical and Applied Genetics 115: 877–84. DOI: https://doi.org/10.1007/s00122-007-0604-3

Hylander N, Jorstad I and Nannfeldt J A. 1953. Enumeratio uredionearum Scandinavicarum. Opera Botanica 1: 1–102.

Jaccoud D, Peng K, Feinstein D and Kilian A. 2001. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29: e25 DOI: https://doi.org/10.1093/nar/29.4.e25

Jackson H S and Mains E B. 1921. Aecial stage of the orange leaf rust of Wheat, Puccinia triticina Erikss. Journal of Agricultural Research 22: 151–72.

Jin Y, Szabo L J, and Carson M. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis an an alternate host. Phytopathology 100: 432–5. DOI: https://doi.org/10.1094/PHYTO-100-5-0432

Johnson R, Stubbs W W, Fuchs E and Chamberlain N H. 1972. Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Transactions of the British Mycological Society 58: 475–80 DOI: https://doi.org/10.1016/S0007-1536(72)80096-2

Johnston C O and Mains E B. 1932. Studies in physiologic specialization in Puccinia triticia.Technical Bulletin of USDA, p 22.

Khan R, Bariana H, Dholakia B, Naik S, Lagu M, Rathjen A, Bhavani S and Gupta V. 2005.

Molecular mapping of stem and leaf rust resistance in wheat. Theoretical and Applied Genetics 111: 846–50. DOI: https://doi.org/10.1007/s00122-005-0005-4

Knott D R. 1989. Genetic analysis of resistance. (In) The Wheat Rusts- Breeding for Resistance. pp 58-82. Springer-Verlag, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-83641-1_5

Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowden R L and Gill B S. 2007. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics 114: 1 379–8. DOI: https://doi.org/10.1007/s00122-007-0524-2

Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S and Spielmeyer W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics 114: 21–30. DOI: https://doi.org/10.1007/s00122-006-0406-z

Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P and Xia X C. 2006. Molecular tagging of stripe rust resistance gene YrZH84in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics 112: 1 098–103. DOI: https://doi.org/10.1007/s00122-006-0211-8

Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H and Bjornstad A. 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics 116: 1 155–66. DOI: https://doi.org/10.1007/s00122-008-0743-1

Ling H Q, Zhu Y and Keller B. 2003. High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from Lr1 locus. Theoretical and Applied Genetics 106: 875–82. DOI: https://doi.org/10.1007/s00122-002-1139-2

Liu S, Yu L X, Singh R P, Jin Y, Sorrells M E and Anderson J A. 2010. Diagnostic and codominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theoretical and Applied Genetics 120: 691–7. DOI: https://doi.org/10.1007/s00122-009-1186-z

Loegering W Q. 1959. Methods for recording cereal rust data. USDA, International spring wheat nursery.

Mago R, Bariana H S, Dundas I S, Spielmeyer W, Lawrence G J, Pryor A J and Ellis G. 2005. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics 111: 496–504. DOI: https://doi.org/10.1007/s00122-005-2039-z

Mago R, Spielmeyer W, Lawrence G J, Lagudah E S, Ellis J G and Pryor A. 2002. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics 104: 1 317–24. DOI: https://doi.org/10.1007/s00122-002-0879-3

Mago R, Zhang P, Bariana H S, Verlin D C, Bansal U K, Ellis J G and Dundas I S. 2009. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theoretical and Applied Genetics 119: 1 441–50. DOI: https://doi.org/10.1007/s00122-009-1146-7

Mains E B and Jackson H S. 1926. Physiologic specialization in the leaf rust of wheat Puccinia triticina Erikss. Phytopathology 16: 89–120.

McEwan J M. 1969. The source of stem rust infecting New Zealand wheat Crops. New Zealand Journal of Agricultural Research 9: 536–41. DOI: https://doi.org/10.1080/00288233.1966.10431548

McCartney H A, Foster S J, Fraaije B A and Ward E. 2003. Molecular diagnostics for fungal plant pathogens. Pesticide Management Science 59: 129–42. DOI: https://doi.org/10.1002/ps.575

McFadden E S. 1930. A successful transfer of emmer characters to vulgare wheat. Journal American Society of Agronomy 22: 1 020–34. DOI: https://doi.org/10.2134/agronj1930.00021962002200120005x

McGinnis R C. 1953. Cytological studies of chromosomes of rust fungi. 1. The mitotic chromosomes of Puccinia graminis. Canadian Journal of Botany 31: 522–6. DOI: https://doi.org/10.1139/b53-039

McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Somers D J and Anderson O A. 2008. Catalogue of gene symbols for wheat: Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2008.pdf.

McIntosh R A, Wellings C R and Park R F. 1995. Wheat rust- an atlas of resistance genes. CSIRO Publications, Canberra, Australia. DOI: https://doi.org/10.1071/9780643101463

McIntosh R A. 1992. Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathology 41: 523–7. DOI: https://doi.org/10.1111/j.1365-3059.1992.tb02450.x

Mehta K C. 1929. Annual recurrence of rusts on wheat in India. Presidential address (Sec. of Botony). Proceedings of 16th Indian Science Congress, 199 p.

Mehta K C. 1940. Further studies on Cereal Rusts in India (Vol I). Imperial Council Agricultural Research. New Delhi. Scientific Monograph 14, 224 p.

Mettin D, Bluthner W D and Schlegel R.1973. Additional evidence on spontaneous 1B/1R, wheat Rye substitutions and translocations. In: Sears E R and Sears L M S (eds) Proceedings of the 4th international wheat genetics symposium. Agricultural Experimental Station, University of Missouri, Columbia, MO, pp 179–84.

Mujeeb-Kazi A and Rajaram S. 2002. Transferring alien genes from related species and genera for wheat improvement. (In) Bread wheat: improvement and production. Plant Production and Protection. Series no. 30. ‘Curtis B C, Rajaram S & Gomez M H (Eds.). FAO, Rome,

Nagarajan S and Joshi L M. 1975. Historic account of wheat rust epidemics in India and their significance. Cereal Rusts Bulletin 3: 25–33.

Nagarajan S and Joshi L M. 1985. Epidemiology in the Indian subcontinent. (In) The cereal rusts, Diseases, distribution, epidemiology and control, Vol. 2, pp 371–402. DOI: https://doi.org/10.1016/B978-0-12-148402-6.50020-1

Roelfs A P and Bushnell W R (Eds). Academic Press, Orlando, FL, USA. Nagarajan S and Saari E E. 1995. Repeat performance of yellow rust spread from Turkey to Indian sub-continent. Indian Journal of Mycology and Plant Pathology 25(1-2): 68 (Abstract).

Nagarajan S. 2012. Is Puccinia graminis f.sp. tritici – virulence Ug99 a threat to wheat production in the North West Plain Zone of India?Indian Phytopath 65 (3): 219–26.

Nagarajan S, Nayar S K and Bahadur P. 1983. The proposed brown rust of wheat (Puccinia recondita f.sp. tritici) virulence monitoring system. Current Science 52(9): 413–6.

Nagarajan S, Nayar S K, Bahadur P and Bhardwaj S C. 1987. Evaluation of some Indian wheats for Yr, Lr and Sr genes by matching technique and genetic uniformity observed. Cereal Rusts and Powdery Mildews Bull.15(2): 53–64.

Naik S, Gill K S, Rao V S P, Gupta V S, Tamhankar S A, Pujar S, Gill B S and Ranjekar P K. 1998. Identification of a STS marker linked to an Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Theoratical and Applied Genetics 97: 535–40. DOI: https://doi.org/10.1007/s001220050928

Nayar S K. 1989. ACIAR-ICAR collaborative Research Report “Genetics and Breeding for rust resistance in wheat”. Plant Breeding Institute, University of Sydney, Australia, 50 p.

Nayar S K, Jain S K, Prashar M, Bhardwaj S C, Kumar S and Menon M K. 2003. Appearance of new pathotype of Puccinia recondita tritici virulent on Lr9 in India. Indian Phytopathlogy 56(2): 196–8.

Nayar S K, Nagarajan S, Prashar M, Bhardwaj S C, Jain S K and Datta D. 2001. Revised catalogue of genes that accord resistance to Puccinia species in wheat. Directorate of Wheat Research, Regional Station, Flowerdale, Shimla, 48 p.

Nayar S K, Tandan J P, Kumar J, Prashar M, Bhardwaj S C, Goel L B and Nagarajan S. 1994. Basis of rust resistance in Indian wheats. Research Bulletin No 1, Directorate of Wheat Research, Regional Station, Flowerdale, Shimla, 32 p.

Nelson J C, Sorrells M E, Van Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D and Anderson J A. 1995. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–31. DOI: https://doi.org/10.1093/genetics/141.2.721

Neu C, Stein N and Keller B. 2002. Genetic mapping of the Lr20- Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737– 44. DOI: https://doi.org/10.1139/g02-040

Olson E L, Brown-Geudira G, Marshall D, Stack E, Bowden R L, Jin Y, Rouse M and Pumphrey M O. 2010. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Science 50: 1 823–30. DOI: https://doi.org/10.2135/cropsci2009.11.0652

Parlevliet J E. 1993. What is durable resistance? A general outline. (In) Durability of disease resistance, pp 23–9. DOI: https://doi.org/10.1007/978-94-011-2004-3_3

Jacobs T and Parlevliet J E (Eds). Kluwer Academic Publishers, The Netherlands.

Paull J G, Pallota M A and Langridge P. 1994. RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theoretical and Applied Genetics 89: 1 039–45. DOI: https://doi.org/10.1007/BF00224536

Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P and Feuillet C. 2006. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC- end sequencing on chromosome 3B. Plant Journal 48: 463– 74. DOI: https://doi.org/10.1111/j.1365-313X.2006.02891.x

Perez B and Roelfs A P. 1989. Resistance to wheat leaf rust of land cultivars and their derivatives. Phytopathology 79: 1 183 (abstract).

Periyannan S K, Bansal U K, Bariana H S, Pumphrey M and Lagudah E S. 2011. A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theoretical and Applied Genetics 122: 1–7. DOI: https://doi.org/10.1007/s00122-010-1417-3

Persoon C H. 1797. Tentamen dispositionis methodicae fungorum in classes, ordines, generaet familias cum supplemento adjecto. (In) Romer’s Neues Magazin BotaniK, pp 1–48. DOI: https://doi.org/10.5962/bhl.title.42674

Peterson R F, Campbell A B and Hannah A E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research 26: 496–500. DOI: https://doi.org/10.1139/cjr48c-033

Prashar M, Bhardwaj S C, Jain S K and Datta D. 2007. Pathotypic evolution in Puccinia striifromis in India during 1995-2004. Australian Journal of Agricultural Research 58: 602–4. DOI: https://doi.org/10.1071/AR07126

Prashar M, Bhardwaj S C, Jain S K and Gangwar O P. 2015. Virulence diversity in Puccinia striiformis f.sp. tritici causing yellow rust on wheat (Triticum aestivum) in India Indian Phytopathology 68(2): 129–33.

Pretorius Z A, Singh R P, Wagoire W W and Payne T S. 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease 84(2): 203. DOI: https://doi.org/10.1094/PDIS.2000.84.2.203B

Prins R, Groenewald J Z, Marais G F, Snape J W and Koebner R M D. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics 103: 618–24. DOI: https://doi.org/10.1007/PL00002918

Prins R, Marais G F, Janse B J H, Pretorius Z A and Marais A S. 1996. A physical map of the Thinopyrum-derived Lr19 translocation. Genome 39: 1 013–9. DOI: https://doi.org/10.1139/g96-126

Procunier J D, Townley-Smith T F, Prashar S, Gray M, Kim W K, Czarnecki E and Dyck P L. 1995. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). Journal of Genetics and Breeding 49: 87–9.

Randhawa M, Bansal U, Valárik M, Klocova B, Dolezel J and Bariana H. 2014. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theoretical and Applied Genetics 127: 317–24. DOI: https://doi.org/10.1007/s00122-013-2220-8

Raupp W J, Singh S, Brown-Guedira G L and Gill B S. 2001. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theoretical and Applied Genetics 102: 347–52. DOI: https://doi.org/10.1007/s001220051652

Roelfs A P and McVey D V. 1974. Races of Puccinia graminisf. sp. tritici in the USA during 1973. Plant Disease Reporter 58: 608–11.

Roelfs A P. 1978. Estimated losses caused by rust in small grain cereals in the united states 1918–76.

Miscellaneous Publication 1363. United States department of Agriculture: Washington DC.

Rosewarne G M, Singh R P, Huerta-Espino J, William H M, Bouchet S, Cloutier S, McFadden H and Lagudah E S. 2006. Leaf tip necrosis, molecular markers and â1-proteosome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theoratical and Applied Genetics 112: 500–8. DOI: https://doi.org/10.1007/s00122-005-0153-6

Savile D B O. 1984. Taxonomy of the cereal rust fungi. (In) The cereal rusts, Origins, specificity, structures, and physiology, vol 1, pp 79-112. Bushnell W R and Roelfs A P (Eds). Academic Press, Orlando, FL, USA. DOI: https://doi.org/10.1016/B978-0-12-148401-9.50009-1

Sawhney R N. 1994. Breeding for durable resistance to wheat rusts. Publications and Information Directorate, New Delh, 52 p.

Schachermayr G M, Messmer M M, Feuillet C, Winzeler H, Winzeler M and Keller B. 1995. Identification of molecular markers linked to the Agropyron elongatumderived leaf rust DOI: https://doi.org/10.1007/BF00222911

resistance gene Lr24 in wheat. Theoretical and Applied Genetics 90: 982–90.

Schachermayr G M, Siwdler H, Gale M D, Winzeler H, Winzeler M and Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theoretical and Applied Genetics 88: 110–5 DOI: https://doi.org/10.1007/BF00222402

Schmidt J K. 1827. Allgemeine ökonomisch-technischc Flora oder Abbildungen und Beschreibungen aller in bezug auf Ökonomic und Technologic, merkwürdigen Gewächse,” Jena, Germany, Vol. I, p 27.

Semagn K, Bjornstad A and Ndjiondjop M N. 2006a. An overview of molecular marker methods for plants. African Journal of Biotechnology 5: 2 540–68.

Semagn K, Bjornstad A, Skinnes H, Maroy A G, Tarkegne Y and William M. 2006b. Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. Genome 9: 545–55 DOI: https://doi.org/10.1139/g06-002

Seyfarth R, Feuillet C, Schachermayr G, Winzeler M and Keller B. 1999. Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theoretical and Applied Genetics 99: 554–60. DOI: https://doi.org/10.1007/s001220051268

Sibilia C. 1960. La forma ecidica della ruggine bruna delle foglie di grano Puccinia recondita Rob. ex Desm. in Italia. Boll. Stn. Patol. Veg. Rome 18(3): 1–8.

Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E and Dubcovsky J. 2011. Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theoretical and Applied Genetics 122: 649–58. DOI: https://doi.org/10.1007/s00122-010-1444-0

Singh P K and and Hughes G R. 2006. Genetic similarity among isolates of Pyrenophora tritici repentis, causal agent of tan spot of wheat. Journal of Phytopathology 154: 178–84. DOI: https://doi.org/10.1111/j.1439-0434.2006.01083.x

Singh R P and Rajaram S. 1992. Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome 35: 24–31. DOI: https://doi.org/10.1139/g92-004

Singh R P and Rajaram S. 1994. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72: 1–7. DOI: https://doi.org/10.1007/BF00023766

Singh R P, Herrera-Foessel S, Huerta-Espino J, Sukhwinder Singh, Bhavani S, Caixia Lan and Basnet B R. 2014. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high yielding spring wheat. Journal of Integrative Agriculture 13(2): 255–61. DOI: https://doi.org/10.1016/S2095-3119(13)60649-8

Singh R P, Huerta-Espino J and William H M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry 29: 121–7.

Singh R P, Huerta-Espino J, Bhavani S, Herrera-Foessel S A, Singh D and Singh P K. 2011b. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica. 179: 175–86. DOI: https://doi.org/10.1007/s10681-010-0322-9

Singh R P, Payne T S and Rajaram S. 1991. Characterization of variability and relationship among components of partial resistance to leaf rust in CIIMYT breed wheats Theoretical and Applied Genetics 82: 674–80. DOI: https://doi.org/10.1007/BF00227310

Singh R P. 1992a. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Science 32: 874–8. DOI: https://doi.org/10.2135/cropsci1992.0011183X003200040008x

Singh R P. 1992b. Genetic association of leaf rust resistance gene Lr34with adult plant resistance to stripe rust in bread wheat. Phytopathology 82: 835–8. DOI: https://doi.org/10.1094/Phyto-82-835

Smith P H, Hadfield J, Hart N J, Koebner R M D and Boyd L A. 2007. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome 50: 259–65. DOI: https://doi.org/10.1139/G07-004

Soleimani V D, Baum B R and Johnson D A. 2003. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Molecular Biology Reporter 21: 281–8. DOI: https://doi.org/10.1007/BF02772803

Song W Y, Wang G L, Zhu L H, Fauquet C and Ronald P. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270(5243): 1 804–6. DOI: https://doi.org/10.1126/science.270.5243.1804

Spielmeyer W, McIntosh R A, Kolmer J and Lagudah E S. 2005. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics 111: 731–5. DOI: https://doi.org/10.1007/s00122-005-2058-9

Spielmeyer W, Sharp P and Lagudah E. 2003. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science 43: 333–6. DOI: https://doi.org/10.2135/cropsci2003.3330

Stakman E C and Levine M N. 1922. The determination of biologic forms of Puccinia graminis on Triticum sp. Technical Bulletin 10, University of Minnesota Agriculture Experiment Station, pp 10.

Stakman E C, Stewart D M and Loegering W Q. 1962. Identification of physiological races of Puccinia graminis var. tritici .US Dep. Agric, ARS E 617,53 p.

Stakman E C. 1914. A study in cereal rusts: physiologic forms. Minnesota Agricultural Experiment Station 138, p 56. DOI: https://doi.org/10.5962/bhl.title.41944

Stubbs R W. 1985. Stripe rust. (In) The Cereal Rusts Diseases, Distribution, Epidemiology and Control, Vol II, pp 6–101. Roelfs A P and Bushnell W R (Eds). Academic Press, Orlando, USA, DOI: https://doi.org/10.1016/B978-0-12-148402-6.50011-0

Sun G L, Fahima T, Korol A B, Turpein-en T, Grama A, Ronin Y I and Nevo E. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theoratical and Applied Genetics 95: 622–8. DOI: https://doi.org/10.1007/s001220050604

Sun Q, Wei Y and Ni Z. 2002. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breeding 121: 539–41. DOI: https://doi.org/10.1046/j.1439-0523.2002.00754.x

Sun X, Bai G, Carver B F and Bowden R. 2010. Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Science 50: 59–66. DOI: https://doi.org/10.2135/cropsci2009.01.0049

Tautz D and Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12: 4 127–8. DOI: https://doi.org/10.1093/nar/12.10.4127

Tomar S M S and Menon M G K. 2001. Genes for disease resistance in wheat. Indian Agriculture Research Institute, New Delhi, 152 p.

Tsilo T J, Chao S, Jin Y and Anderson J A. 2009. Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theoretical and Applied Genetics 118: 515–24. DOI: https://doi.org/10.1007/s00122-008-0917-x

Tsilo T J, Jin Y and Anderson J A. 2008. Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36in diverse genetic backgrounds of wheat. Crop Science 48: 253– 61. DOI: https://doi.org/10.2135/cropsci2007.04.0204

Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T and Dubcovsky J. 2005. High- temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics 112: 97–105. DOI: https://doi.org/10.1007/s00122-005-0109-x

Van der Plank J E. 1963. Plant Diseases: Epidemics and Control, p 349. Academic Press, New York and London.

Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 11: 4 407–14.

Walia, D P and Kumar, S. 2008. Genetics of rust resistance in wheat - An update. (In) Crop Improvement Strategies and Applications, pp 119–31. Setia R C, Nayyar H and Setia N I K (Eds). International Publishing House Pvt Ltd, New Delhi.

Wang S, Wong D, Forrest K and Allen A. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787–96. DOI: https://doi.org/10.1111/pbi.12183

Watson I A and Luig N H. 1963. The classification of Puccinia graminis var. tritici in relation to breeding resistant varieties. Proceedings of the Linnean Society of New South Wales 88: 235–58.

Wellings C R and McIntosh R A. 1981. Stripe rust - a new challenge to the wheat industry. Agricultural Gazette of New South Wales 92: 2–4.

Wellings C R. 2011. Global status of stripe rust: a review of historical and current threats. Euphytica 179: 129–41. DOI: https://doi.org/10.1007/s10681-011-0360-y

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A and Kilian A. 2004. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proceding of National Acadamy of Science USA 101: 9 915–20. DOI: https://doi.org/10.1073/pnas.0401076101

Westendorp G D 1854. Quatrième notice sur quelques Cryptogames récemment découvertes en Belgique. Bulletin of Academy of Royal Science Belgium 21: 229–2 46.

William H M, Hoisington D, Singh R P and Gonzalez-de-Leon D. 1997. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40: 253–60. DOI: https://doi.org/10.1139/g97-036

William M, Singh R P, Huerta-Espino J, Ortiz Islas S and Hoisington D. 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93: 153–9. DOI: https://doi.org/10.1094/PHYTO.2003.93.2.153

Williams J G K, Kubelik A R, Livak K J, Rafalski J A and Tingey S V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6 531–5. DOI: https://doi.org/10.1093/nar/18.22.6531

Williams P G, Scott J K, Kuhl L J and Maclean J D. 1967. Sporulation and pathogenicity of Puccinia graminis f. sp. tritici grown on an artificial medium. Phytopathology 57: 326–7.

Yu L X, Liu S, Anderson J A, Singh R P, Jin Y, Dubcovsky J, Guidera G B, Bhavani S, Morgounov A, He Z, Huerta-Espino J and Sorrells M E. 2010. Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Molecular Breeding 26: 667–80. DOI: https://doi.org/10.1007/s11032-010-9403-7

Zeller E J.0 1973.1B/1R wheat rye chromosome substitutions and translocations. (In) Proceedings of the 4th International Wheat Genetics Symposium, pp 209–11. Sears E R and Sears L M S (Eds). Agricultural Experiment Station, University of Missouri, Columbia, MO.

Zhang W, Olson E L, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey M O and Dubcovsky J. 2010. Genetic maps of stem rust resistance gene Sr35in diploid and hexaploid wheat. Crop Science 50: 2 464–74. DOI: https://doi.org/10.2135/cropsci2010.04.0202

Downloads

Submitted

2016-10-04

Published

2016-10-05

Issue

Section

Review Article

How to Cite

BHARDWAJ, S. C., PRASAD, P., GANGWAR, O. P., KHAN, H., & KUMAR, S. (2016). Wheat rust research—then and now. The Indian Journal of Agricultural Sciences, 86(10), 1231–44. https://doi.org/10.56093/ijas.v86i10.62092
Citation