Differential gene expression signatures of auxin response factors and auxin/ indole 3-acetic acid genes in storage root as compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas)


Abstract views: 211 / PDF downloads: 50

Authors

  • V RAVI ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695 017
  • S K CHAKRABARTI ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695 017
  • R SARAVANAN ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695 017
  • T MAKESHKUMAR ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695 017
  • J SREEKUMAR ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695 017

https://doi.org/10.56093/ijas.v87i4.69421

Keywords:

Gene expression, Sweet potato, Storage root

Abstract

The phytohormone auxin is involved in the cell division, proliferation and initial thickening of storage root of sweet potato. This article reports the differential expression of functionally distinct auxin responsive candidate genes such as Auxin Response Factors (ARF) and Auxin/Indole 3-Acetic Acid (Aux/IAA) in the storage root of sweet potato [Ipomoea batatas (L.) Lam]. The differential expression of ESTs of these auxin regulated genes were analyzed in the storage root of sweet potato as compared to non-storage root using the Gene Expression Hybridization kit (Part Number 5190-0404; Agilent). During the initial storage root development of sweet potato ARF1, ARF2, ARF10, ARF9 and ARF16 are proposed to be involved in regulating genes controlling cell division pattern while ARF7, ARF8 promote cell elongation/expansion and links brassinosteroid, ethylene and auxin and JA interaction, whereas ARF4 is involved in asymmetric pattern establishment. Several Aux/IAA genes, viz. OsIAA2, OsIAA7, OsIAA10, OsIAA21, OsIAA30 were up-regulated whereas, OsIAA4, OsIAA10, OsIAA17, OsIAA21, OsIAA30, OsIAA31 were down-regulated in the storage root as compared to fibrous root of sweet potato. The down-regulation of IAA4 may be significant in determining the storage root length of sweet potato.

Downloads

Download data is not yet available.

References

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R and Scheres B. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109–20. DOI: https://doi.org/10.1016/j.cell.2004.09.018

Bargmann B O R and Estelle M. 2014. Auxin perception: in the IAA of the beholder. Physiologia Plantarum 151: 52–61. DOI: https://doi.org/10.1111/ppl.12135

Boer D R, Freire-Rios A, van den Berg W A M, Saaki T, Manfield I W, Kepinski S, Lo´ pez-Vidrieo I, Franco-Zorrilla J M, de Vries S C, Solano R, Weijers D and Coll M. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156: 577–89. DOI: https://doi.org/10.1016/j.cell.2013.12.027

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, and Bennett M J. 2003. Dissecting Arabidopsis lateral root development. Trends in Plant Science 8: 165–71. DOI: https://doi.org/10.1016/S1360-1385(03)00051-7

Chandler J W. 2016. Auxin response factors. Plant Cell Environment 39:1 014–28. DOI: https://doi.org/10.1111/pce.12662

Chapman E J. and Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43: 265–85. DOI: https://doi.org/10.1146/annurev-genet-102108-134148

Chomczynski P and Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162: 156–9. DOI: https://doi.org/10.1016/0003-2697(87)90021-2

CIP. 2010. Facts and figures about sweet potato. International Potato Center, La Molina, Peru.

Dharmasiri N and Estelle M. 2004. Auxin signaling and regulated protein degradation. Tredns in Plant Science 9: 302–8. DOI: https://doi.org/10.1016/j.tplants.2004.04.003

de Jong M, Wolters-Arts M, Feron R, Mariani C, and Vriezen W H. 2009. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant Journal 57: 160–70. DOI: https://doi.org/10.1111/j.1365-313X.2008.03671.x

de Jong M, Wolters-Arts M, García-Martínez J L, Mariani C, and Vriezen W H. 2011. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany 62: 617–26. DOI: https://doi.org/10.1093/jxb/erq293

de Jong M, Wolters-Arts M, Schimmel B C J, Stultiens C L M, de Groot P F M, Powers S J, Tikunov Y M, Bovy A G, Mariani C, Vriezen W H and Rieu I. 2015. AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. Journal of Experimental Botany 66: 3 405–16. DOI: https://doi.org/10.1093/jxb/erv152

Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J and Reed J W. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132: 4563–74. DOI: https://doi.org/10.1242/dev.02012

Faivre-Rampant O, Cardle L, Marshall D, Viola R and Taylor M A. 2004. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. Journal of Experimental Botany 55: 613–22. DOI: https://doi.org/10.1093/jxb/erh075

Firon N, La Bonte Don R, Villordon A, Kfir Y, Solis J, Lapis E and Perlman T S. 2013. Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14: 460 Open access. http://www.biomedcentral.com/1471-2164/14/460. DOI: https://doi.org/10.1186/1471-2164-14-460

Gan D, Zhuang D, Ding F, Yu Z and Zhao Y. 2013. Identification and expression analysis of primary auxin-responsive Aux/ IAA gene family in cucumber (Cucumis sativus). Journal of Genetics 92: 513–21. DOI: https://doi.org/10.1007/s12041-013-0306-3

Gray W M, Kepinski S, Rouse D, Leyser O and Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–6. DOI: https://doi.org/10.1038/35104500

Guilfoyle T J and Hagen, G. 2001. Auxin response factors. Journal of Plant Growth Regulation 10: 281–91. DOI: https://doi.org/10.1007/s003440010026

Guilfoyle T J and Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10: 453–60. DOI: https://doi.org/10.1016/j.pbi.2007.08.014

Hardtke C S, Ckurshumova W, Vidaurre D P, Singh S A, Stamatiou G, Tiwari S B, Hagen G, Guilfoyle T J, Berleth T. 2004. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1 089–1 100. DOI: https://doi.org/10.1242/dev.00925

Hagen G and Guilfoyle T J. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49: 373–85. DOI: https://doi.org/10.1007/978-94-010-0377-3_9

Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu, K,Watahiki M K, Yamamoto K. and Liscum E. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–70. DOI: https://doi.org/10.1105/tpc.12.5.757

Hu Y, Xie Q and Chua N-H. 2003. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15: 1 951–61. DOI: https://doi.org/10.1105/tpc.013557

Indian Horticulture Data-base 2014. National Horticulture Board, Ministry of Agriculture, Government of India, Gurugarm pp 194–7.

Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K and Khurana J P 2006. Structure and expression analysis of early auxin-responsive Aux⁄IAA gene family in rice (Oryza sativa). Functional and Integrative Genomics 6: 47–59. DOI: https://doi.org/10.1007/s10142-005-0005-0

Kemal Kazan 2013. Auxin and the integration of environmental signals into plant root development. Annals of Botany 112: 1 655–65. DOI: https://doi.org/10.1093/aob/mct229

Kim J, Harter K and Theologis A. 1997. Protein–protein interactions among the Aux⁄IAA proteins. PNAS (USA) 94: 11 786–91. DOI: https://doi.org/10.1073/pnas.94.22.11786

Korasick D A, Westfall C S, Lee S G, Nanao M H, Dumas R, Hagen G, Guilfoyle T J, Jeza J M. and Stradera L C. 2014. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. PNAS (USA) 111: 5 427–32. DOI: https://doi.org/10.1073/pnas.1400074111

Leyser O. 2002. Molecular genetics of auxin signaling. Annual Review of Plant Biology 53: 377–98. Li S-B, Xie Z-Z, Hu C-G and Zhang J-Z. 2016. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7: 1–6. DOI: https://doi.org/10.3389/fpls.2016.00047

Li H, Johnson P, Stepanova A, Alonso J M and Ecker J R. 2004. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Developmental Cell 7: 193–204. DOI: https://doi.org/10.1016/j.devcel.2004.07.002

Li T. 2013. Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics 14: 297–310.

Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yong H-Q, Luan S, Li J and He Z H. 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3activation in Arabidopsis. Proceedings of National Academy of Sciences USA 110: 15485–90. DOI: https://doi.org/10.1073/pnas.1304651110

Liscum E and Reed J W. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology 49: 387–400. DOI: https://doi.org/10.1007/978-94-010-0377-3_10

Ludwig Y, Zhang Y, Hochholdinger F. 2013. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. PLOS 8: e78859. DOI: https://doi.org/10.1371/journal.pone.0078859

Mallory A C, Bartel D P, Bartel B. 2005. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 1360–1375. DOI: https://doi.org/10.1105/tpc.105.031716

Mockaitis K and Estelle M. 2008. Auxin receptors and plant development: A new signaling paradigm. Annual Review of Cell and Developmental Biology 24: 55–80. DOI: https://doi.org/10.1146/annurev.cellbio.23.090506.123214

Mun J H, Yu, H J, Shin J Y, Oh M, Hwang H J and Chung H. 2012. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution. Molecular Genetics and Genomics 287: 765–84. DOI: https://doi.org/10.1007/s00438-012-0718-4

Nakatani M and Komeichi M. 1992. Changes in endogenous indole acetic acid level during development of roots in sweet potato. Japanese Journal of Crop Science 61: 683–4. DOI: https://doi.org/10.1626/jcs.61.683

Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert V A and Helariutta Y. 2008. Cytokinin signal regulates cambial development in poplar. PNAS (USA) 105: 20032–20037. DOI: https://doi.org/10.1073/pnas.0805617106

Noh S A, Lee H-S, Huh E J, Huh G H, Paek K-H, Shin J S and Bae J M. 2010. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). Journal of Experimental Botany 61: 1337–1349. DOI: https://doi.org/10.1093/jxb/erp399

Okushima Y, Overvoorde P J, Arima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G and Theologis A. 2005a. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17: 444–463. DOI: https://doi.org/10.1105/tpc.104.028316

Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao, X and Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao, X and Li T. 2013. Genome-wide analysis of the GH3 family in apple (Malus x domestica). BMC Genomics 14: 297–310. DOI: https://doi.org/10.1186/1471-2164-14-297

Okushima Y, Mitina I, Quach H L, Theologis A. 2005b. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant Journal 43: 29–46. DOI: https://doi.org/10.1111/j.1365-313X.2005.02426.x

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118–30. DOI: https://doi.org/10.1105/tpc.106.047761

Ouellet F, Overvoorde P J and Theologis A. 2001. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13: 829–41. DOI: https://doi.org/10.1105/tpc.13.4.829

Pierre-Jerome E, Moss B L and Nemhauser J L. 2013. Tuning the auxin transcriptional response. Journal of Experimental Botany 64: 2 557–63. DOI: https://doi.org/10.1093/jxb/ert100

Pekker I, Alvarez J P and Eshed Y. 2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17: 2 899–2 910. DOI: https://doi.org/10.1105/tpc.105.034876

Poutrain P, Guirimand G, Glévarec G, Courdavault V and Pichon O. 2011 Molecular characterization of an Aux/IAA of Catharanthus roseus. Journal of Plant Growth Regulation 30: 235–241. DOI: https://doi.org/10.1007/s00344-010-9187-3

Punita N, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M., Cohen J D, Farme, E E, Ecker J R and Reed J W. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4 107–18. DOI: https://doi.org/10.1242/dev.01955

Quint M and Gray W M. 2006. Auxin signalling. Current Opinion in Plant Biology 9: 448–53. DOI: https://doi.org/10.1016/j.pbi.2006.07.006

Rademacher E H, Moller B, Lokerse A S, Llavata-Peris C I, van den Berg W and Weijers D A. 2011. Cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant Journal 68: 597–606. DOI: https://doi.org/10.1111/j.1365-313X.2011.04710.x

Ravi V, Naskar S K, Makeshkumar T, Binoy Babu and Prakash Krishnan B S. 2009. Molecular physiology of storage root formation and development in sweet potato. Journal of Root Crops 35: 1–27.

Ravi V and Saravanan R. 2012. Crop physiology of sweet potato. Fruit, Vegetable and Cereal Science and Biotechnology 6 (Special Issue 1): 17–29.

Ravi V, Chakrabarti S K, Makeshkumar T and Saravanan R. 2014. Molecular regulation of storage root formation and development in sweet potato. Horticultural Reviews 42: 57–208. DOI: https://doi.org/10.1002/9781118916827.ch03

Reed J W. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science 6: 420–5. DOI: https://doi.org/10.1016/S1360-1385(01)02042-8

Remington D L, Vision T J, Guilfoyle T J and Reed J W. 2004. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiology 135: 1 738–52. DOI: https://doi.org/10.1104/pp.104.039669

Shuai B, Reynaga-Pena C G and Springer P S. 2002. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiology 129: 747–61. DOI: https://doi.org/10.1104/pp.010926

Singla B, Archana C, Khurana J P. and Khurana P. 2006. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. Journal of Experimental Botany 57: 4 059–70. DOI: https://doi.org/10.1093/jxb/erl182

Schafleitner R, Tincopa L R, Palomino O, Rossel G, Robles R F, Alagon R, Rivera C, Quispe C, Rojas L, Pacheco J A, Solis J, Cerna D, Kim J Y, Hou J and Simon R. 2010. A sweet potato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics 11: 604. DOI: https://doi.org/10.1186/1471-2164-11-604

Schruff M C, Spielman M, Sushma, T, Adams, S Fenby N and Scott R J. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133: 251–61. DOI: https://doi.org/10.1242/dev.02194

Song Y, Wang L and Xiong L. 2009. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229: 577–91. DOI: https://doi.org/10.1007/s00425-008-0853-7

Song Y and Xu Z-F. 2013. Ectopic overexpression of an AUXIN/ INDOLE-3-ACETIC ACID (Aux/IAA) Gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. International Journal of Molecular Sciences 14: 13 645–56. DOI: https://doi.org/10.3390/ijms140713645

Su Y H, Liu Y B, Bai B, and Zhang X S. 2014. Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Frontiers in Plant Science 5: 792. DOI: https://doi.org/10.3389/fpls.2014.00792

Tao X, Gu Y- H, Wang H-Y, Zheng W, Li X, Zhao W C, and Zhang Y Z. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7:e36234. doi:10.1371/ journal.pone.0036234. DOI: https://doi.org/10.1371/journal.pone.0036234

Teale W D, Paponov I A and Palme K. 2006. Auxin in action: signaling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology 7: 847–59. DOI: https://doi.org/10.1038/nrm2020

Tian C-E, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T and Yamamoto K T. 2004. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal 40: 333–43. DOI: https://doi.org/10.1111/j.1365-313X.2004.02220.x

Tiwari S B, Wang X-J, Hagen G, and Guilfoyle T J. 2001. Aux/ IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell 13: 2809–22. DOI: https://doi.org/10.1105/tpc.010289

Tiwari S B, Hagen G and Guilfoyle T 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533–43. DOI: https://doi.org/10.1105/tpc.008417

Tiwari S B, Hagen G and Guilfoyle T J 2004. Aux⁄IAA proteins contain a potent transcriptional repression domain. Plant Cell 16: 533–43. DOI: https://doi.org/10.1105/tpc.017384

Ulmasov T, Hagen G and Guilfoyle T J 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1 865–68. DOI: https://doi.org/10.1126/science.276.5320.1865

Ulmasov T, Hagen G and Guilfoyle T J.1999. Activation and repression of transcription by auxin-response factors. Proceedings of National Academy of Sciences USA 96: 5 844–9. DOI: https://doi.org/10.1073/pnas.96.10.5844

Van Ha C V, Le D T, Nishiyama R, Watanabe Y, Sulieman S, Tran U T, Mochida Dong K V K, Kazuko Y-S and Tran L S P. 2013. The auxin response factor transcription factor family in Soybean: Genome-wide identification and expression analyses during development and water stress. DNA Research 20: 511–24. DOI: https://doi.org/10.1093/dnares/dst027

Vert G, Walcher C L, Chory J and Nemhauser J L. 2008. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. PNAS (USA) 105: 9 829–34. DOI: https://doi.org/10.1073/pnas.0803996105

Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B and Tao Y. 2007. Genome-wide analysis of the auxin response factor (ARF) gene family in rice (Oryza sativa). Gene 394: 13–24. DOI: https://doi.org/10.1016/j.gene.2007.01.006

Wang J-W, Wang L-J, Mao YB, Cai W-J, Xue H-W, and Chena X-Y. 2005. Control of root cap formation by micro RNA-targeted auxin response factors in Arabidopsis. Plant Cell 17: 2204–16. DOI: https://doi.org/10.1105/tpc.105.033076

Wang S, Tiwari S B, Hagen G and Guilfoyle T J. 2005. AUXIN RESPONSE FACTOR7 restores the Expression of auxin-responsive genes in mutant arabidopsis leaf mesophyll protoplasts. Plant Cell 17: 1979–93. DOI: https://doi.org/10.1105/tpc.105.031096

Wang Y, Deng D, Shi Y, Miao N, Bian Y. and Yin Z. 2012. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Molecular Biology Reports 39: 2 401–15. DOI: https://doi.org/10.1007/s11033-011-0991-z

Wang Y, Deng D, Bian Y, Lv Y and Xie Q. 2010. Genome-wide analysis of primary auxin responsive Aux/IAA gene family in maize (Zea mays L.). Molecular Biology Reports 37: 3 991–4 001. DOI: https://doi.org/10.1007/s11033-010-0058-6

Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X and Li Y. 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11: 726. Open access http://www. biomedcentral.com/1471-2164/11/726. DOI: https://doi.org/10.1186/1471-2164-11-726

Weijers D, Benkova E, Jager K E, Schlereth A, Hamann T, Kientz M, Wilmoth J C, Reed J W, and Jurgens G. 2005. Developmental specificity of auxin response by pairs of ARF and Aux/ IAA transcriptional regulators. EMBO Journal 24: 1874–85. DOI: https://doi.org/10.1038/sj.emboj.7600659

Wilmoth J C, Wang, S, Tiwari S B, Joshi A D, Hagen G, Guilfoyle T J, Alonso J M, Ecker J R. and Reed J W. 2005. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal 43: 118–30. DOI: https://doi.org/10.1111/j.1365-313X.2005.02432.x

Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, and Lu G. 2011. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports 30: 2 059–73. DOI: https://doi.org/10.1007/s00299-011-1113-z

Wu J, Peng Z, Liu S, He Y, Cheng, L., Kong F, Wang, J. and Lu G. 2012. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Molecular Genetics and Genomics 287: 295–311. DOI: https://doi.org/10.1007/s00438-012-0675-y

Wu J, Liu S, Guan X, Chen L, He Y, Wang J, and Lu G. 2014. Genome-wide identification and transcriptional profiling of auxin response-related gene families in cucumber. BMC Research Notes 7: 218–30. DOI: https://doi.org/10.1186/1756-0500-7-218

Xing H, Pudake R N, Guo G, Xing G, Hu Z, Zhang Y, Sun Q and Ni Z. 2011. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12: 178–90. DOI: https://doi.org/10.1186/1471-2164-12-178

Downloads

Submitted

2017-04-10

Published

2017-04-12

Issue

Section

Articles

How to Cite

RAVI, V., CHAKRABARTI, S. K., SARAVANAN, R., MAKESHKUMAR, T., & SREEKUMAR, J. (2017). Differential gene expression signatures of auxin response factors and auxin/ indole 3-acetic acid genes in storage root as compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas). The Indian Journal of Agricultural Sciences, 87(4), 512–520. https://doi.org/10.56093/ijas.v87i4.69421
Citation