Effects of replacing fish meal with different levels of Lead tree (Leucaena leucocephala) leaf powder on growth, survival, digestive enzymes activity, muscle biochemical composition and texture of white-leg shrimp Penaeus vannamei Boone, 1931


Abstract
This study investigated the effects of replacing fish meal with Leucaena leucocephala leaf powder on survival,
growth performance, digestive enzyme activities, biochemical body composition and muscle texture of the whiteleg shrimp (Penaeus vannamei Boone, 1931). Five different diets were examined, by replacing fish meal with
L. leucocephala leaf powder at 0, 5, 10, 15 and 20%, in triplicates. Shrimps were stocked in 0.5 m3 tanks @ 70 shrimps per
tank and fed on the experimental diets for a period of 60 days. The results showed that the survival rate (%), daily weight
gain (g day-1), specific growth rate (% day-1), feed intake (% fish-1 day-1), feed conversion ratio, protein efficiency ratio, and
protein retention were not significantly different (p>0,05) among the treatment groups. The values of α-amylase and pepsin
in the stomach and chymotrypsin (mU min-1 mg protein-1) in the intestine were not significantly different among treatments.
However, the value of α-amylase in the intestine was significantly higher in animals fed diets that replaced fish meal with
L. leucocephala leaf powder at 0, 5 and 10% compared to other treatments. The biochemical constituents (except for lipid)
and the texture (N) of shrimp meat were not significantly different among treatment groups. The results suggested that
L. leucocephala leaf powder could replace fish meal up to 20% in white-leg shrimp diets.
Keywords: Digestive enzyme, Growth, Leucaena leucocephala, White-leg shrimp
Downloads
References
Abdullah, O., Ayse, O., Mevlut, A., Gozde, G. and Jelena, M. 2009. A comparative study on proximate, mineral and fatty acid compositions of deep seawater rose shrimp (Parapenaeus longirostris, Lucas, 1846) and red shrimp (Plesionika martia, A. Milne-Edwards, 1883). J. Anim. Vet. Adv., 8(1): 183-189.
Akande, K.; Doma, U.; Agu, H.; Adamu, H. 2010. Major antinutrients found in plant protein sources: their effect on nutrition. Pak. J. Nutr., 9(8): 827-832.
Amaya, E. A., Davis, D. A. and Rouse, D. B. 2007. Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquac., 262(2-4): 393-401. https://doi.org/10.1016/j.aquaculture.2006.11.015
AOAC. 2016. Official Methods of Analysis of AOAC International, 20th ed. AOAC International, Rockville, MD, USA. 3172 p.
Ayisi, C. L., Hua, X., Apraku, A., Afriyie, G. and Kyei, B. A. 2017. Recent studies toward the development of practical diets for shrimp and their nutritional requirements. HAYATI J. Biosci. 24(3): 109-117. https://doi.org/10.1016/j.hjb.2017.09.004
Boyd, C. E., Davis, R. P. and McNevin, A. A. 2021a. Perspectives on the mangrove conundrum, land use, and benefits of yield intensification in farmed shrimp production: a review. J. World Aquac. Soc., 53 (1): 8-46. https://doi.org/10.1111/jwas.12841
Boyd, C. E., McNevin, A. A. and Davis, R. P. 2022. The contribution of fisheries and aquaculture to the global protein supply. Food Sec., 14: 805–827. https://doi.org/10.1007/s12571-021-01246-9
Boyd, C. E. Davis, R. P. D. Wilson, A. G., Marcillo, F., Brian, S. and McNevin, A. A. 2021b. Resource use in white leg shrimp Litopenaeus vannamei farming in Ecuador. J. World Aquac. Soc., 52(4): 772–788. https://doi.org/10.1111/jwas.12818
Bernfeld, P. 1995. Amylase α and β. Meth. Enzymol.,1: 149–158
Bragagnolo, N. and Rodriguez-Amaya, D. B. 2021. Total lipid, cholesterol, and fatty acids of farmed freshwater prawn (Macrobrachium rosenbergii) and wild marine shrimp (Penaeus brasiliensis, Penaeus schimitti, Xiphopenaeus kroyeri). J. Food Compos. Anal., 14(4): 359-369. https://doi.org/10.1006/jfca.2000.0981
Carrillo-Farnes, O., Forrellat-Barrios, A., Guerrero-Galvan, S. and Vega-Villasante. 2007. A review of digestive enzyme activity in Penaeid shrimps. Crustaceana, 80(3): 257-275. DOI:10.1163/156854007780162424
Emire, S. A., Jha, Y. K. and Mekam, F. 2013. Role of anti-nutritional factors in food industry. Beverage Food World, 23-28.
Ezquerra Brauer, J. M., Salazar Leyva, J. A., Bringas Alvarado, L. and Rouzaud Sandez, O. 2003. Effect of dietary protein on muscle collagen, collagenase and shear force of farmed white shrimp (Litopenaeus vannamei). Eur. Food Res. Technol., 217: 277-280. https://doi.org/10.1007/s00217-003-0739-7
FAO. 2020. The State of World Fisheries and Aquaculture. Sustainability in action. Rome, Italy.
Gokoglu, N., Yerlikaya, P. and Gokoglu, M. 2008. Mini-review. Trace elements in edible tissue of three shrimp species (Penaeus semisulcatus, Parapenaeus longirostris and Paleomon serratus). J. Sci. Food Agric., 88(2): 175-178. https://doi.org/10.1002/jsfa.3086
Hughes, C. 2010. Global invasive species database species profile: Leucaena leucocephala. Available Online: http://www.iucngisd.org/gisd/species.php?sc=23 (access on January 10, 2022)
Jory, D. E. 2018. Current production, challenges and the future of shrimp farming. Global seafood alliance. https://www.globalseafood.org/advocate/current-production-challenges-and-the-future-of-shrimp-farming/ (access at 10 January 2022)
Lan, T. T. P., Hien, T. T. T., Tu, T. L. C., Khanh, N. V., Haga, Y. and Phu, T. M. 2020. Salinization intensifies the effects of elevated temperatures on Channa striata, a common tropical freshwater aquaculture fish in the Mekong Delta, Vietnam. Fish. Sci. 86: 1029-1036. https://doi.org/10.1007/s12562-020-01463-9
Li, G., Sinclair, A. J. and Li, D. 2011. Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. J. Agric. Food Chem., 59(5): 1871-1881. DOI: 10.1021/jf104154q
Macias-Sancho, J., Poersch, L. H., Bauer, W., Romano, L. A., Wasielesky, W. and Tesser, M. B. 2014. Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects of growth and immunological parameters. Aquaculture, 426-427: 120-125. https://doi.org/10.1016/j.aquaculture.2014.01.028
Man, N. V., Hao, N. V.; and Tri, V. M. 1995. Biomass production of some leguminous shrubs and trees in Vietnam. Livest. Res. Rural Dev., 7(2).
Mazumder, S. K., Das, S. K., Rahim, S. M. andGhaffar, M. A. 2018. Temperature and diet effect on the pepsin enzyme activities, digestive somatic index and relative gut length of Malabar blood snapper (Lutjanus malabaricus Bloch & Schneider, 1801). Aquac. Rep., 9: 1–9. https://doi.org/10.1016/j.aqrep.2017.11.003
Moura, A. F. P. and Tenuta, F. A. 2002. Effects of processing on free cholesterol and 7-ketocholesterol concentrations in pink-shrimp. Food. Sci. Technol., 22(2): 117–121. https://doi.org/10.1590/S0101-20612002000200003
Nawwar, Z. M. Izzah, S. M. A. and Seri, N. 2017. Partial replacement of fish meal by white leadtree meal in diets for juveniles of Giant River Prawn, Macrobrachium rosenbergii (De Man, 1879). Can. J. Fish Aquat. Sci., 5(2): 154-157
Olckers, T. 2011. Biological control of Leucaena leucocephala (Lam.) de Wit (Fabaceae) in South Africa: a tale of opportunism, seed feeders and unanswered questions. Afr. Entomol., 19(2): 356-365.
Olsen, R. L. and Hasan, M. R. 2012. A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends Food Sci. Technol., 27(2): 120-128. https://doi.org/10.1016/j.tifs.2012.06.003
Puga-López, D., Ponce-Palafox, J. T., Barba-Quintero, G., Torres-Herrera, M. R., Beltran-Romero, E., Arredondo-Figueroa, J. L. and Gomez, M. G. 2013. Physicochemical, proximate composition, microbiological and sensory analysis of farmed and wild harvested white shrimp (Litopenaeus vannamei) Boone, 1931 tissues. Curr. Res. J. Biol. Sci., 5(3): 130-135.
Roy, S., Kumar, V., Mitra, A. and Manna, R. K. 2018. Amylase and protease activity in shrimps and prawn of Sundarbans. West Bengal, India. Indian J. Geo-Mar. Sci., 47(01): 53-59
Saldanha, T., Sawaya, A. C. M. F., Eberlin, M. N. and Braganolo, N. 2006. HPLC Separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J. Agric. Food Chem., 54(12): 4107-4113. DOI: 10.1021/jf0532009
Sambhu, C. and Jayaprakash, V. 1994. Effect of hormones on growth, Food conversion and proximate composition of the white prawn, Penaeus indicus (Milne Edwards). Indian J. Mar. Sci., 23: 232-235.
Sarma, K., Chand, S., Kumar, U., Dey, A. and Nayak, S. K. 2022. Effect of vitamin C and mineral enriched diet on growth and survival of Labeo rohita fry. Indian J. Fish, 69(3): 28-35. DOI: 10.21077/ijf.2022.69.3.112822-04
Shelton, H. M. and Brewbaker, J. L. Forage Tree Legumes in Tropical Agriculture. CAB INTERNATIONAL, Wallingford, UK, 1994, pp. 15-29.
Simon, S. J. G. B., Sancho, R. A. S., Lima, F. A., Cabral, C. C. V. Q., Souza, T. M., Bragagnolo, N. and Lira, G. M. 2012. Interaction between soybean oil and the lipid fraction of fried pitu prawn. LWT - Food Sci. Technol., 48(1): 120-126. https://doi.org/10.1016/j.lwt.2012.02.015
Song, H-L., Tan, B-P., Chi, S., Liu, Y., Chowdhury, M. A. K. and Dong, X-H. 2017. The effects of a dietary protease-complex on performance, digestive and immune enzyme activity, and disease resistance of Litopenaeus vannamei fed high plant protein diets. Aquac. Res., 48(5): 2550-2560
Sotolu, A. O. Nutrient potential of water hyacinth as a feed supplement in sustainable aquaculture. Obeche J. 2008, 26, 45-51.
Sotolu, A. O. and Faturoti, E. O. 2011. Growth performance and hematological effects of varying dietary processed Leucaena leucocephala seed meal in Clarias gariepinus (burchell, 1822) juvenile. AJFAND., 11(1): 4546-4557. DOI: 10.4314/ajfand.v11i1.65880
Sriket, P., Benjakul, S., Visessanguan, W. and Kijroongrojana, K. 2007. Comparative studies on chemical composition and thermal properties of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) meats. Food Chem. 2007, 103(4): 1199-1207. https://doi.org/10.1016/j.foodchem.2006.10.039
Suarez, J. A., Gaxiola, G., Mendoza, R., Cadavid, S., Garcia, G., Alanis, G., Suarez, A., Faillace, J. and Cuzon, G. 2009. Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931). Aquac., 289(1-2): 118-123. http://dx.doi.org/10.1016/j.aquaculture.2009.01.001
Verma, S. 2016. Review Study on Leucaena leucocephala: A Multipurpose Tree. IJSRSET. 2(2): 103-105
Wee, K. L. and Wang, S. S. 1987. Nutritive value of Leucaena leaf meal in pelleted feed for Nile tilapia. Aquac., 62(2):97-108. https://doi.org/10.1016/0044-8486(87)90314-0
Worthington, T. M. 1982. Enzyme and Related Biochemicals. Biochemical Products Division, Worthington Diagnostic System, Freehold, NJ, USA. pp. 215-226.
Xia, S., Zhao, W., Li, M., Zhang, L., Sun, L. and Liu, S. 2018. Effects of dietary protein levels on the activity of the digestive enzyme of albino and normal Apostichopus japonicus (Selenka). Aquac. Res., 49(3): 1302-1309. https://doi.org/10.1111/are.13585
Yang, Q., Tan, B., Dong, X., Shuyan, C. S. and Liu, H. 2015. Effect of replacing fish meal with extruded soybean meal on growth, feed utilization and apparent nutrient digestibility of juvenile white shrimp (Litopenaeus vannamei). J. Ocean Univ. China, 14: 865-872. https://doi.org/10.1007/s11802-015-2572-6
Yanar, Y.; Celik, M. 2006. Seasonal amino acid profiles and mineral content of green tiger shrimp (Penaus semisulcatus, De Haan, 1844) and speckled shrimp (Metapenaus monoceros, Fabricus 1789) from the Eastern Mediterranean sea. Food Chem., 94(1): 33-36. https://doi.org/10.1016/j.foodchem.2004.09.049
Yun, H., Shahkar, E., Hamidoghli, A., Lee, S., Won, S. and Bai, S. C. 2017. Evaluation of dietary soybean meal as fish meal replacer for juvenile white leg shrimp, Litopenaeus vannamei reared in biofloc system. Int. Aquat. Res., 9: 11-24. https://doi.org/10.1007/s40071-017-0152-7