Amino acid and fatty acid compositions of various stages of Chanos chanos larvae: Implications for larval feed formulation

Abstract views: 82 / PDF downloads: 252

Amino acids and fatty acid profile of milkfish larvae


  • T Sivaramakrishnan Scientist, NGBD, ICAR-Central Institute of Brackishwater Aquaculture
  • J. Syama Dayal Principal Scientist
  • K. Ambasankar ICAR-Central Institute of Brackishwater Aquaculture
  • N. Felix Tamil Nadu Dr. J. Jayalalitha Fisheries University (TNJFU)
  • K. P. Sandeep. ICAR-Central Institute of Brackishwater Aquaculture
  • Aritra Bera ICAR-Central Institute of Brackishwater Aquaculture
  • K.P. Kumaraguru Vasagam ICAR-Central Institute of Brackishwater Aquaculture
  • G. Thiyagarajan ICAR-Central Institute of Brackishwater Aquaculture
  • M. Kailasam ICAR-Central Institute of Brackishwater Aquaculture


milkfish, larvae, larval feed, nutrient requirement


 Amino acid (AA) and fatty acid (FA) composition of the fertilised eggs and different larval stages (at 0, 3, 6, 9, 12, 15 and
21 days post-hatch, dph) of Chanos chanos was investigated. The total indispensable amino acids (IAA) contributed to
55.62% of the total AA in the egg which reduced to 52.54% on 6 dph. The AA profile of C. chanos was found to be rich in
valine (7.99%), leucine (7.51%) and lysine (6.98%) and poor in histidine (2.36%) and methionine (2.47%), indicating a high
valine, leucine and lysine requirement. The docosahexaenoic acid (DHA) content recorded for egg, newly hatched larvae
(NHL) and 21 dph larvae were 2.77, 1.36 and 1.94 mg g-1, respectively. The reduction of fatty acids (FAs) was found to be
very high in newly hatched larvae (NHL), especially that of DHA (51%), ARA (26%) and EPA (24%), which indicates the
significance of these FAs during the embryogenesis of milkfish egg. The trend observed during different stages of AAs and
FAs content indicates their requirement during the larval period and those values are to be considered while formulating
feeds for larval stages of milkfish.

Keywords: Embryogenesis, Larval feed, Milkfish larvae, Nutrient requirement


Download data is not yet available.


Abi-Ayad SMEA., Boutiba, Z., Melard, C. and Kestemont, P. 2004. Dynamics of total body fatty acids during early ontogeny of pikeperch (Sander lucioperca) larvae. Fish Physiol Biochem., 30(2):129-36.

Abidi, S.F. and Khan, M.A. 2004. Dietary valine requirement of Indian major carp, Labeo rohita (Hamilton) fry. J Appl Ichthyol., 20(2) : 118-22.

Abidi, S.F. and Khan, M.A. 2007. Dietary leucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac. Res. 38(5): 478-86.

Ahmed, I. and Khan, M.A. 2006. Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Britis J Nutr., 96 (3): 450-60.

AOAC. 1995. Association of official analytical chemists. In: Official Methods of Analysis, 15th edn Arlington,VA, USA.

Applebaum, S.L. and Rønnestad, I. 2003. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 230: 313-322.

Araujo, B.C., Honji, R.M., Mello, P.H. and Moreira, R.G. 2012. The influence of captive breeding on the fatty acid profiles of Salminus hilarii (Characiformes: Characidae) eggs and larvae. Aquac. Int., 20(6): 1161-81.

Bera, A., Kailasam, M., Mandal, B., Padiyar, A., Ambasankar, K., Sukumaran, K., Makesh, M., Kumararaja, P., Subburaj, R., Thiagarajan, G. and Vijayan, K.K. 2021. Maturity induction and extended spawning kinetics of milkfish (Chanos chanos) administered with combined GnRHa and 17α-methyl testosterone pellet at varied frequencies. Aquaculture, 736993.

Bera, A., Kailasam, M., Mandal, B., Sukumaran, K., Makesh, M., Hussain, T., Sivaramakrishnan, T., Subburaj, R., Thiagarajan, G. and Vijayan, K.K. 2019. Effect of tank colour on foraging capacity, growth, and survival of milkfish (Chanos chanos) larvae. Aquaculture, 512: 734347.

Cheng, Z., Buentello, A. and Gatlin III D.M. 2011. Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture, 319(1-2): 247-52.

Conceicao, L.E.C., Van der Meeren, T., Verreth, J.A.J., Evjen, M.S., Houlihan, D.F. and Fyhn, H.J. 1997. Amino acid metabolism and protein turnover in larval turbot (Scophthalmus maximus) fed natural zooplankton or Artemia. Mar Biol., 129(2): 255-265.

Conceicao, L.E.C., Rønnestad, I. and Tonheim, S.K. 2002. Metabolic budgets for lysine and glutamate in unfed herring (Clupea harengus) larvae. Aquaculture, 206(3-4), 305-12.

Costa, D.C., Takata, R., Bessonart, M., Gadea, J.L., Magnone, L. and Luz, R.K. 2018. Description of amino acid and fatty acid content during initial development of Lophiosilurus alexandri (Siluriformes: Pseudopimelodidae), a carnivorous freshwater catfish. Neo. Ichth., 16(2): 180014.

Dantagnan, H., Borquez, A.S., Valdebenito, I.N., Salgado, I.A., Serrano, E.A. and Izquierdo, M.S. 2007. Lipid and fatty acid composition during embryo and larval development of puye Galaxias maculates Jenyns, obtained from estuarine, freshwater and cultured populations. J. Fish Biol., 70(3): 770-81.

Dayal, J.S., Ali, S.A., Thirunavukkarasu, A.R., Kailasam, M., Subburaj, R., 2003. Nutrient and amino acid profiles of egg and larvae of Asian seabass, Lates calcarifer (Bloch). Fish Physiol. Biochem, 29(2), 141-147.

Finlayson, A.J. 1965. Amino acid recovering in the analysis of some feed samples. Can. J. Plant Sci. 45: 184–188.

Finn, R.N. and Fyhn, H.J. 2010. Requirement for amino acids in ontogeny of fish. Aquac. Res., 41(5): 684-716.

Folch, J., Lees, M. and Stanley, G.S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1): 497-509.

Garrido, S., Saiz, E., Peters, J., Re, P., Alvarez, P., Cotano, U., Herrero, D.L., Martinez, Murguia A.D. and Irigoien, X. 2012. Effect of food type and concentration on growth and fatty acid composition of early larvae of the anchovy (Engraulis encrasicolus) reared under laboratory conditions. J. Exp. Mar. Biol. Ecol. 434-435(1): 16-24.

Glencross, B.D. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac., 1(2): 71-124.

Gurure, R., Atkinson, J. and Moccia, R.D. 2007. Amino acid composition of Arctic charr, Salvelinus alpinus (L.) and the prediction of dietary requirements for essential amino acids. Aquac. Nutr. 13(4): 266-72.

Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S. and Shu-Chien, A.C. 2008. Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebra fish Danio rerio. Aquaculture, 277(3-4): 275-81.

Jajic, I., Krstovic, S., Glamocic, D., Jaksic, S. and Abramovic, B. 2013. Validation of an HPLC method for the determination of amino acids in feed. J. Serbian Chem. Soc., 78(6): 839-850.

Gunasekera, R.M., De, Silva, S.S. and Ingram, B.A. 1999. The amino acid profiles in developing eggs and larvae of the freshwater Percichthyid fishes, trout cod, Maccullochella macquariensis and Murray cod, Maccullochella peelii peelii. Aquat Living Resour., 12(4): 255-61.

Li, P., Mai, K., Trushenski, J. and Wu,G. 2009. New developments in fish amino acid nutrition: towards functional and environmentally oriented aqua feeds. Amino Acids., 37(1): 43-53.

Li, P., Yin, Y., Li, D., Kim, W.K. and Wu, G. 2007. Amino acids and immune function. Br. J. Nutr. 98(2): 237-52.

Lim, C., Borlongan, I.G. and Pascual, F.P. 2002. Milkfish, Chanos chanos. In C. D. Webster and C. Lim (Eds.), Nutrient requirements and feeding of finfish for aquaculture, (pp. 172–183). Wallingford, Oxon ; New York: CABI.

Martins, E.F.F., Magnone, L., Bessonart, M., Costa, D.C., Santos, J.C.E., Bazolli, N., Nakayama, C.L. and Luz, R.K. 2017. Description of the composition of fatty acids and lipids in the breeders muscle, oocytes and in the embryonic development of Bryconor thotaenia (Günther, 1864). Anim. Reprod. Sci., 181(1): 167-74.

Oberg, E.W. and Fuiman, L.A. 2015. Linking fatty acids in the diet and tissues to quality of larval southern flounder (Paralichthys lethostigma). J. Exp. Mar. Biol. Ecol., 467(1): 7-15.

Ortega, A. and Mourente, G. 2010. Comparison of the lipid profiles from wildcaught eggs and unfed larvae of two scombroid fish: northern Bluefin tuna (Thunnus thynnus L., 1758) and Atlantic bonito(Sarda sarda Bloch, 1793). Fish Physiol. Biochem., 36(3): 461-71.

Ronnestad, I., Thorsen, A. and Finn, R.N. 1999. Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture, 177: 201-216.

Ronnestad, I., Tonheim, S.K., Fyhn, H.J., Rojas-Garcia, C.R., Kamisaka,Y., Koven, W., Finn, R.N., Terjesen, B.F. and Conceicao, L.E.C. 2003. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture, 227: 147-164.

Saavedra, M., Beltran, M., Pousao-Ferreira, P., Dinis, M.T., Blasco, J. and Conceicao, L.E.C. 2007. Evaluation of bioavailability of individual amino acids in Diplodus puntazzo larvae: towards the ideal dietary amino acid profile. Aquaculture, 263(1-4): 192-98.

Saavedra, M., Candeias-Mendes, A., Castanho, S., Teixeira, B., Mendes, R. and Pousao-Ferreira, P. 2015. Amino acid profiles of meagre (Argyrosomus regius) larvae: Towards the formulation of an amino acid balanced diet. Aquaculture, 448(1): 315-20.

Saavedra, M., Conceicao, L.E.C., Pousao-Ferreira, P. and Dinis, M.T. 2006. Amino acid profiles of Diplodus sargus (L., 1758) larvae: Implications for feed formulation. Aquaculture, 261(2); 587-93.

Sastry, C.S.P. and Tummuru, M.K. 1985. Spectrophotometric determination of tryptophan in proteins. J. Food Sci. Technol., 22 (2): 146-147.

Sivaramakrishnan, T., Ambasankar, K., Kumaraguru Vasagam, K.P., Syama Dayal, J., Sandeep, K.P., Bera, A., Makesh, M., Kailasam, M. and Vijayan, K.K. 2021. Effect of dietary soy lecithin inclusion levels on growth, feed utilization, fatty acid profile, deformity and survival of milkfish (Chanos chanos) larvae. Aquac. Res. 52(11): 5366-5374.

Sivaramakrishnan, T., Ambasankar, K., Sathish Kumar, T., Sandeep, K.P., Thomas, D., Ananda Raja, R., Vasagam, K.P.K., Syama Dayal, J. and Kailasam, M. 2022. Influence of dietary protein levels on growth, feed utilization, body indices and serum profile of silver moony Monodactylus argenteus. Aquaculture, 549: 737823.

Tocher, D.R. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 41(5): 717-32.

Tong, X., Yang, X., Bao, C., Wang, J., Tang, X., Jiang, D. And Yang, L. 2017. Changes of biochemical compositions during development of eggs and yolk-sac larvae of turbot Scophthalmus maximus. Aquaculture, 473(1): 317-26.

Wiegand, M.D. 1996. Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiol. Biochem., 15(1): 21-27.

Wu, G., Bazer, F.W., Davis, T.A., Kim, S.W., Li, P., Rhoads, J.M., Satterfield, M.C., Smith, S.B, Spencer, T.E. and Yin, Y. 2009. Arginine metabolism and nutrition in growth, health and disease. Amino Acids., 37(1): 153-68.

Zhang, C., Ai, Q., Mai, K., Tan, B., Li, H. and Zhang, L. 2008. Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 283(1-4): 123-27.

Zhou, F, Xiao, J.X., Hua, Y., Ngandzali, B.O. and Shao, Q.J. 2011. Dietary L-methionine requirement of juvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level. Aquac. Nutr., 17(5): 469-81.






How to Cite

Sivaramakrishnan, T., J, S. D., K, A., N, F., K.P. , S., Bera, A., K.P., K. V., G, T., & M, K. (2023). Amino acid and fatty acid compositions of various stages of Chanos chanos larvae: Implications for larval feed formulation: Amino acids and fatty acid profile of milkfish larvae. Indian Journal of Fisheries, 70(1).