Biochemical and nutritional profiling of selected tropical green seaweeds

Chlorophytan seaweeds as health food


368 / 61

Authors

  • Aswathi Elizabeth Mani Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute
  • Shilpa Kamalakar Pai Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute
  • Kajal Chakraborty Central Marine Fisheries Research Institute
  • Jiji Kannan Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute
  • Vijayagopal Pananghat Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute

https://doi.org/10.21077/ijf.2024.71.3.138211-15

Keywords:

Fatty acid profile, Amino acid, Seaweed

Abstract

The nutritional composition and anti-inflammatory properties of six tropical green seaweeds viz., Ulva lactuca, Ulva linza, Halimeda macroloba, Halimeda gracilis, Chaetomorpha antennina and Chaetomorpha linum were evaluated. U. lactuca exhibited the highest carbohydrate content (66.1%), while U. linza (12.89%) and U. lactuca (12.06%) showed the highest protein content, indicating their potential as plant-based protein sources. H. gracilis contained the highest ash content (35.12%), highlighting its mineral richness, particularly calcium, magnesium and phosphorus. Lipid content was low across all species, but U. linza exhibited the highest polyunsaturated fatty acid content (22.94%), with α-linolenic acid (13.72%) which could support cardiovascular health. Mineral analysis revealed high calcium levels in C. linum (18.99 mg 100 g-1), contributing to bone health. Pigment analysis showed
U. linza contained the highest chlorophyll-a (7.60 μg ml-1) and total carotenoids (0.30 μg ml-1), adding antioxidant potential to its bioactivity. Chaetomorpha linum exhibited the strongest anti-inflammatory activity (IC50 = 1.60 mg ml-1), with bioactivity correlating to the favorable n-3/n-6 fatty acid ratio. Amino acid analysis identified U. linza as the richest source of essential amino acids, particularly methionine (6.37 mg g-1) and valine (6.30 mg g-1), making it an excellent candidate for dietary supplements. The results of the study suggest that green seaweeds belonging to the family Ulvaceae could be a potential non-conventional source for dietary products and functional food supplements.

Keywords: Anti-inflammatory activities, Chlorophyta seaweeds, Essential amino acid, Non-conventional nutritional sources, Polyunsaturated fatty acid

Downloads

Download data is not yet available.

Author Biography

  • Kajal Chakraborty, Central Marine Fisheries Research Institute
    Senior Scientist, Marine Biotechnology Division

References

AOAC, 1990. Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, Washington DC.

AOAC, 2005. Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists. Washington, DC.

Arasaki, A. and Arasaki, T. 1983. 1st edn. Low calories, High Nutrition. Vegetables from the Sea to help you Look and Feel Better. Japan Publications, Tokyo.

Baylac, S.and Racine, P. 2003. Inhibition of 5-lipoxygenase by essential oils and other natural fragment extracts.Int. J. Aromather., 13: 138-142. doi.org/10.1016/S0962-4562 (03)00083-3.

Cardoso, C., Ripo, A., Afonso, C., Freire, M., Varela, J., Quental-Ferreira, H., Pousao-Ferreira P. and Bandarra, N. 2017. Fatty acid profiles of the main lipid classes of green seaweeds from fish pond aquaculture. Food Sci., 5: 1186-1194. doi.org/10.1002/fsn3.511.

Chakraborty, K. and Joseph, D. 2015. Inter-annual and seasonal dynamics of amino acid, mineral and vitamin composition of silverbelly Leiognathus splendens. J. Mar. Biol. Ass. UK. 95: 817-828. doi.org/10.1017/S0025315414001155

Chakraborty, K., Chakkalakal, S. J., Deepu, J., Joseph, D.and Joy, M. 2016. Nutritional composition of edible oysters (Crassostrea madrasensis L.) from the Southwest Coast of India. J. Aquat. Food Prod. Technol., 25: 1172-1189.

Chakraborty, K., Joseph, D. and Chakkalakal, S. J. 2014. Seasonal and inter-annual lipid dynamics of spiny cheek grouper (Epinephelus`diacanthus) in the southern coast of India. J. Mar. Biol. Assoc. U. K., 94: 1677-1686.doi.org/10.1017/S0025315414000757.

Chakraborty, K.andPaulraj, R. 2010.Sesquiterpenoids with free radical scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem., 122: 31-4. doi.org/10.1016/j.foodchem.2010.02.012.

Chen, B., McClements, D. J. and Decker, E. A. 2013. Design of foods with bioactive lipids for improved health. Annu Rev Food Sci and Technol., 4: 35-56.doi.org/10.1146/annurev-food-032112-1358808.

Cleland. J., Bernstein, S., Ezeh, A., Faundes, A., Glasier, A., and Innis, J. 2006. Family planning: The unfinished agenda. Lancet 18: 1810–1827.

Darcy-Vrillon, B. 1993. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int. J Food Sci Nutr., 44: 23-35. eurekamag.com/research/002/445/002445548.php.

Dawes, C. J. 1998. Marine Botany. 2nd ed. Wiley. New York.

Diniz, G.S., Barbarino, E., Oiano-Neto, J., Pacheco, S.andLourenço, S.O. 2011. Gross chemical profile and calculation of nitrogen-to-protein conversion factors for five tropical seaweeds. Am. J. Plant Sci., 2: 287-296.doi.org/10.4236/ajps.2011.23032.

Element, C. A. S. 2007. Method 3015A microwave-assisted acid digestion of aqueous samples and extracts. Washington, DC: Environmental Protection Agency.

Ersoy, B. and Sereflisan, H. 2010. The proximate composition and fatty acid profiles of edible parts of two freshwater mussels. Turkish. J. Fish. Aquat. Sci., 10: 71-74.

FAO/WHO/UNU. 2007. Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU Expert Consultation (WHO Technical Report Series 935, Geneva, Switzerland.

Folch, J., Lees, M. and Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497-509. https://pubmed.ncbi.nlm.nih.gov/13428781.

Fujiwara-Arasaki, T., Mino, N. and Kuroda, M. 1984. The protein value in human nutrition of edible marine algae in Japan. Hydrobiologia., 116: 513-516.

Garcia, J.S., Palacios, V.andRoldán A. 2016. Nutritional potential of four seaweed species collected in the Barbate Estuary (Gulf of Cadiz, Spain). J Nutr Food Sci.,6: 3.doi.org/10.4172/2155-9600.1000505.

Gressler, V., Yokoya, N., Fujii, M., Colepicolo, P., Filho, J., Torres, R. and Pinto, E. 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem., 120: 585-590. https://doi.org/10.1016/j.foodchem.2009.10.028.

Hiscox, J.D., and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot.,57: 1332-1334. doi.org/10.1139/b79-163.

Holdt, S.L. and Kraan, S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol., 23: 543-597. doi.org/10.1007/s10811-010-9632-5.

Khairy, H.M., and El-Sheikh, M.A. 2015. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi. J. Biol. Sci.,22: 623-630.doi.org/10.1016/j.sjbs.2015.01.010.

Kirk, J.T.O., and Allen, R.L. 1965. Dependence of chloroplast pigments synthesis on protein synthetic: effects on actilione. Biochem Biophy Res Comm., 27: 523-530.

Latimer, G.W. 2016. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA.

Lourenço, S.O., Barbarino, E., De-Paula, J.C., Pereira, L.O.D.S., Lanfer Marquez, U.M. 2002. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res., 50, 233–241.

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.

Mac Artain, P., Gill, C.I.R., Brooks, M., Campbell, R. and Rowland, I.R .2007. Nutritional value of edible seaweeds. Nut. Rev., 65: 535-543. doi.org/10.1111/j.1753-4887.2007.tb00278.x.

Martinez, E.N., and Anon, M.C. 1996. Composition and structural characterization of Amaranth protein isolates. Electrophoretic and colorimetric study. J. Agric. Food Chem., 9: 124-127. doi.org/10.1021/jf960169p.

Matanjun, P., Mohamed, S., Mustapha, N. M. and Muhammad, K. 2009.Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 21: 75-80. doi.org/10.1007/s10811-008-9326-4.

Metcalf, L. D., Schimtz, A. A. and Pleka, J. R. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analyses. Anal. Chem., 38: 514-515.

Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428. doi.org/10.1021/ac60147a030.

Morgan, K.C., Wright, J.L.C. and Simpson, F.J. 1980. Review of chemical constituents of the red alga Palmaria palmata (Dulse). Econ Bot., 34: 27-50.

Ortega-Calvo, J.J., Mazuelos, C., Hermosin, B. and Saiz-Jimenez, C. 1993. Chemical composition of spirulina and eukaryotic algae food products marketed in Spain. J. Appl. Phycol., 5:425-435. doi.org/10.1007/BF02182735.

Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A. and Rios, A. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem., 99: 98-104. doi.org/10.1016/j.foodchem.2005.07.027.

Pangestuti, R. and Kim, S.K. 2011.Neuroprotective effects of marine algae. Mar Drugs. 9: 803-818. doi.org/10.3390/md9050803

Polat, S. and Ozogul, Y.2008. Biochemical composition of some red and brown macro-algae from the Northeastern Mediterranean Sea. Int J Food Sci Nutr., 59: 566-572. doi.org/10.1080/09637480701446524.

Rasyid, A. 2017. Evaluation of nutritional composition of the dried seaweed Ulva lactuca from Pameungpeuk waters, Indonesia. Trop. Life Sci. Res., 28: 119-125.

Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Chiang N., Gronert K. Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal anti-inflammatory drugs and transcellular processing. J. Exp. Med. 2000; 192:1197–1204.

Vaskonen, T. 2003. Dietary minerals and modification of cardiovascular risk factors. J.Nutr. Biochem, 14: 492-506.doi.org/10.1016/S0955-2863 (03)00074-3.

Vieira, E.F., Soares, C.M., Machado, S., Correia, M., Ramalhosa, M.J., Oliva-Teles, M.T., Paula Carvalho, A., Domingues, V.F., Antunes, F., Oliveira, T.A., Morais, S., & Delerue-Matos, C. 2018. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem., 269, 264-275.

Wong, K.H. and Cheung, C.K. 2000. Nutritional evaluation of some subtropical red and green seaweeds Part I: proximate composition, amino acid profiles and some physicochemical properties. Food Chem.,71: 475-482. doi.org/10.1016/S0308-8146 (00)00175-8.

Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C. and Attia H. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem.,128: 895-901.doi.org/10.1016/j.foodchem.2011.03.114.

Downloads

Submitted

2023-06-22

Published

2024-09-30

Issue

Section

Articles

How to Cite

Mani, A. . E., Pai, S. K., Chakraborty, K., Kannan, J., & Pananghat, V. (2024). Biochemical and nutritional profiling of selected tropical green seaweeds: Chlorophytan seaweeds as health food. Indian Journal of Fisheries, 71(3). https://doi.org/10.21077/ijf.2024.71.3.138211-15
Citation