Antibacterial activity of organic fractions from freshwater microalga Chlorella vulgaris against fish and shellfish pathogens

Antibacterial activity of Chlorella against fish pathogens


369 / 87

Authors

https://doi.org/10.21077/ijf.2024.71.2.138810-13

Abstract

The ethanol-based crude extract and fractions partially purified from the freshwater microalga, Chlorella vulgaris underwent screening using disc diffusion assays. The tube dilution method was also employed to determine the minimum inhibitory concentration (MIC) values. The screening involved testing a variety of Gram negative bacterial fish and shellfish
pathogens. The panel of pathogens included four strains of Aeromonas hydrophila (AH1, AH2, AH3, AH4), two strains of Pseudomonas putida (PP1, PP2), two strains of Pseudomonas aeruginosa (PA1, PA2), two strains of Pseudomonas fluorescens (PF1, PF2), Escherichia coli (O115, O1, O156, O164, O111 and O109), Vibrio alginolyticus (VA), V. anguillarum (VAN), V. fluvialis (VF), V. parahaemolyticus (VP), V. harveyi (VH), V. fisheri (VFS), and Edwardsiella tarda.The crude ethanolic extract underwent partial purification through silica gel column chromatography.The crude ethanolic extract was potentially active against all the selected bacterial pathogens, with the lowest MIC value (300 μg) against P. aeruginosa (PA2) and E. coli (O1, O156, O109). Among the nine chromatographic fractions, three exhibited higher activity with lower MIC values (40-50 μg). The results indicate that partially purified C. vulgaris extract has superior antibacterial activity compared to the crude extract. It could be a viable alternative for managing bacterial pathogens in aquaculture, potentially curbing the rise of antibiotic resistance.

Keywords: Antibacterial, Chlorella vulgaris, Minimum inhibitory concentration, Pathogen, Vibrio

Downloads

Download data is not yet available.

Author Biographies

  • Jyotirmayee Pradhan, PG Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore

    Assistant Professor

    PG Department of Zoology

    Kuntala Kumari Sabat Women's College, Balasore

    Odisha 

  • Basanta Kumar Das, Senior Scientist

    Senior Scientist

    Fish Health Management Division

    Central Institute of Freshwater Aquaculture (ICAR)

     

References

Abd El-Baky, H.H., El Baz, F.K. and El-Barot, G.S. 2008. Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. Am. Eurasian. J. Agr. Environ. Sci., 3:434.

Alderman, D.J. and Smith, P. 2001. Development of draft protocols of standard reference methods for antimicrobial agent susceptibility testing of bacteria associated with fish diseases. Aquaculture., 196:211.

Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S. and Schenk, P.M. 2020. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds.. Saudi Pharm. J., 28:1834-1841. doi: 10.1016/j.jsps.2020.11.010.

Alshuniaber, M.A., Krishnamoorthy, R. and AlQhtani, W.H .2021. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci., 28: 459.

An, B.K., Kim, K.E., Jeon, J.Y. and Lee, K.W. 2016. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. Springerplus., 5:718. doi: 10.1186/s40064-016-2373-4.

Athbi, A.M. 2014. Antimicrobial Bioactive Compound Isolated From Cyanobacterium Nostoc linckia. Al-Qadisiyah Med. J., 10: 239.

B., Tsang, Yi-S., Chen, C., Dong, C.D. and Singhania R. R. 2022. Algae as an emerging source of bioactive pigments. Bioresour. Technol., 351: 126910. https://doi.org/10.1016/j.biortech.2022.126910.

Das, B.K. and Pradhan, J. 2010. Antibacterial properties of selected freshwater microalgae against pathogenic bacteria. Ind. J. Fish., 57:61.

Das, B.K., Pradhan, J., Pattnaik, P., Samantara,y B.R. and Samal, S.K. 2005. Production of antibacterials from the freshwater alga Euglena viridis (Ehren). World J. Microbiol. Biotechnol., 21: 45.

de Morais, M.G., Vaz, B.D., de Morais, E.G. and Costa, J.A. 2015. Biologically active metabolites synthesized by microalgae. BioMed. Res. Int., 1-15. https://doi.org/10.1155/2015/835761.

Dineshkumar R, Narendran R, Jayasingam P, Sampathkumar P (2017) Cultivation and Chemical Composition of Microalgae Chlorella Vulgaris and its Antibacterial Activity against Human Pathogens. J Aquac Mar Biol 5(3): 00119 DOI: 10.15406/jamb.2017.05.00119.

Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics. 11:1-42.

Fukada, T., Hoshino, M., Endo, H., Mutai, M. and Shirota, M. 1968. Photodynamic antiviral substance extracted from Chlorella cells. Appl Microbiol. 16 (1968) 1809.

Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., Morowvat, M.H. 2007. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus, J. Biol. Sc., 7:904.

Halperin, S.A., Smith, B., Nolan, C., Shay, J. and Kralovec, J. 2003. Safety and immune enhancing effect of a Chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebo-controlled trial. CMAJ, 169:111.

Hasegawa, T., Matsuguchi, T., Noda, K., Tanaka, K., Kumamoto, S., Shoyama, Y. and Yoshikai, Y. 2002.Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. Int. Immunopharmacol., 2:579.

Ibusuki, K. and Minamishima, Y. 1990. Effect of Chlorella vulgaris extracts on murine cytomegalovirus infections. Nat. Immunity Cell Growth Reg, 9:121.

Izzo, A.A., Di Carlo, G., Biscardi, D., De Fusco, R., Mascolo, N., Borrelli, F., Capasso, F., Fasulo, M.P. and Autore, G. 1995. Biological screening of Italian medicinal plants for antibacterial activity. Phytother. Res., 9:281.

Jafari, S., Mobasher, M.A., Najafipour, S., Ghasemi, Y., Mohkam, M., Ebrahimi, M.A. and Mobasher, N. 2018. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur J. Nat. Pharm. Prod., 13:e13226. https://doi.org/10.5812/jjnpp.13226.

Jayshree, A., Jayashree, S. and Thangaraju, N. 2016. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Ind. J. Pharm. Sci., 78:575.

Kaur, M., Bhatia, S., Gupta, U. et al. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochem Rev (2023). https://doi.org/10.1007/s11101-022-09848-7.

Kokou, F., Makridis, P., Kentouri, M. and Divanach, P. 2012. Antibacterial activity in microalgae cultures. Aquacult. Res., 43:1520.

Lauritano, C. and Ianora, A. 2016. Marine Organisms with Anti-Diabetes Properties. Mar Drugs., 14:220. doi: 10.3390/md14120220.

Matusiak, K., Jaroszyńska, T. and Krzywicka, A. 1965. Activity of antibacterial substances in Chlorella vulgaris and Chlorella pyrenoidosa at various stages of their development cycle and the influence of light on the process. Bulletin de l'Academie polonaise des sciences. Ser des Sci Biolog, 13:667.

Motl, O. and Novotny, L. 1979. Adsorption column chromatography. Laboratory Hand Book of Chromatography and Allied Methods,(Ed. by Mikis, O.) Ellis Horwoods Ltd., Chichester. 150: 217.

Pagels, F.; Amaro, H.M.; Tavares, T.G.; Amil, B.F.; Guedes, A.C. 2022. Potential of Microalgae Extracts for Food and Feed Supplementation—A Promising Source of Antioxidant and Anti-Inflammatory Compounds. Life, 12:1901. https://doi.org/10.3390/life12111901.

Patel, A. K., Jay, F. P., Albarico, B., Perumal, P. K., Vadrale, A. P., Nian, C. T., Chau, H. T. B., Anwar, C., Wani, H. M., Pal, A., Saini, R., Ha, L. H., Senthilkumar, B., Tsang, Yi-S., Chen, C., Dong, C.D. and Singhania R. R. 2022. Algae as an emerging source of bioactive pigments. Bioresour. Technol., 351: 126910. https://doi.org/10.1016/j.biortech.2022.126910

Patra, J.K., Patra, A.P., Mahapatra, N.K., Thatoi, H.N., Das, S., Sahu, R.K. and Swain, G.C. 2009. Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India. Malaysian J. Microbiol., 5:128.

Pradhan, J., Sahu, S., Das, Nilima P M., Mishra, B.K. and Das, B.K. 2011. Antibacterial properties of freshwater Microcystis aeruginosa (Kütz) to bacterial pathogen – a comparative study of bacterial bioassays. Ind. J. Animal Sci. 81: 1266–1271.

Pradhan, J.; Sahu, S.; Das, B.K. 2023. Protective Effects of Chlorella vulgaris Supplemented Diet on Antibacterial Activity and Immune Responses in Rohu Fingerlings, Labeo rohita (Hamilton), Subjected to Aeromonas hydrophila Infection. Life, 13:1028. https://doi.org/10.3390/life13041028

Pratt, R., Daniels, T.C., Eiler, J.J., Gunnison, J.B., Kumler, W.D., Oneto, J.F., Strait, L.A., Spoehr, H.A., Hardin, G.J., Milner, H.W. and Smith, J.H. 1944. Chlorellin, an antibacterial substance from Chlorella. Science, 99:351.

Safi, C., Zebid, B., Merah, O., Pontalier, P. and Vaca-García, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Ren. Sustainable Ener. Rev., 35: 265-278. http://dx.doi.org/10.1016/j.rser.2014.04.007.

Santin, A., Russo, M.T., Ferrante, M.I., Balzano, S., Orefice, I. and Sardo, A. 2021. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture. Molecules. 26:7697. doi: 10.3390/molecules26247697.

Sarkar, A., Akhtar, N. and Mannan, M. 2021. Antimicrobial property of cell wall lysed Chlorella, an edible alga. Res. J. Pharm. Technol., 7:3695.

Serwecińska, L. 2020. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water., 12:3313. https://doi.org/10.3390/w12123313.

Shaima, A.F., Yasin, N.H., Ibrahim, N., Takriff, M.S., Gunasekaran, D. and Ismaeel, M.Y. 2022. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp.(UKM8) and Scenedesmus sp.(UKM9). Saudi J. Biol. Sci., 29:1043.

Shannon, E. and Abu-Ghannam, N. 2016. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. drugs., 14: 81. doi: 10.3390/md14040081.

Stahl, E. 1969. Apparatus and general techniques in TLC. Springer, 52.

Syed. S., Arasu, A. and Ponnuswamy, I. 2015. The uses of Chlorella vulgaris as antimicrobial agent and as a diet: the presence of bio-active compounds which caters to the vitamins, minerals in general. Int. J. Bio-Sci. Bio-Technol., 7:185.

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A. and Osek, J. 2022. Antibiotic Resistance in Bacteria-A Review. Antibiotics (Basel)., 11:1079. doi: 10.3390/antibiotics11081079.

Vijayavel, K., Anbuselvam, C. and Balasubramanian, M.P. 2007. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol. Cell Biochem., 303:39.

Vikneshan, M., Saravanakumar, R., Mangaiyarkarasi, R., Rajeshkumar, S., Samuel, S.R., Suganya, M. and Baskar, G. 2020. Algal biomass as a source for novel oral nano-antimicrobial agents. Saudi J. Biol. Sci., 27:3753.

Widjaja, A., Chien, C. and Ju, Y. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Ins Chemical Eng., 40: 13-20. http:// dx.doi.org/10.1016/j.jtice.2008.07.007.

Downloads

Submitted

2023-07-07

Published

2024-06-30

Issue

Section

Articles

How to Cite

Pradhan, J., & Das, B. K. (2024). Antibacterial activity of organic fractions from freshwater microalga Chlorella vulgaris against fish and shellfish pathogens: Antibacterial activity of Chlorella against fish pathogens. Indian Journal of Fisheries, 71(2). https://doi.org/10.21077/ijf.2024.71.2.138810-13
Citation