Comparison of rice production in an integrated rice-fish system using tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio)
Rice fish integration
189 / 130
Keywords:
Diversification, Tillers, Agriculture, Aquaculture, specific growth rateAbstract
Rice and fish are globally essential staple foods. Given the common challenge of land scarcity faced by both fish farming and agriculture, integrating these practices can provide a viable solution. This study evaluated the integration of rice (Oryza sativa AT362) with tilapia (Oreochromis niloticus, T) and common carp (Cyprinus carpio, C) through four treatments: T, C, T+C (1:1 ratio) and a control (no fish), each treatment with three replicates. The stocking density was 3.75 individuals m-2. Tilapia integration significantly increased the number of leaves, panicles and tillers, resulting in a high yield of 6.7 t ha-¹ (approximately 1.6 times higher than that of control). In contrast, carp integration showed no significant improvements in these parameters. Rice growth was positively correlated with root area diameter, primarily influenced by tilapia activity. Tilapia demonstrated better growth performance compared to carp, with average survival rates of 74 and 64%, respectively. These findings highlight the potential of rice-fish integration in Sri Lanka, particularly the effectiveness of combining O. sativa (AT362) with O. niloticus.
Keywords: Agriculture, Aquaculture, Diversification, Specific growth rate, Tillers
Downloads
References
Adhikari, P., Araya, H., Aruna, G., Balamatti, A., Banerjee, S., Baskaran, P., Barah, B. C., Behera, D., Berhe, T., Boruah, P., Dhar, S., Edwards, S., Fulford, M., Gujja, B., Ibrahim, H., Kabir, H., Kassam, A., Khadka, R. B., Koma, Y. S., . . . Verma, A. (2018). System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: experience with diverse crops in varying agroecologies. International Journal of Agricultural Sustainability, 16(1), 1-28. https://doi.org/https://10.1080/14735903.2017.1402504
Ahmed, N., Hornbuckle, J., & Turchini, G. M. (2022). Blue–green water utilization in rice–fish cultivation towards sustainable food production. Ambio, 51(9), 1933-1948. https://doi.org/10.1007/s13280-022-01711-5
Ahmed, N., Thompson, S., Hardy, B., & Turchini, G. M. (2021). An Ecosystem Approach to Wild Rice-Fish Cultivation. Reviews in Fisheries Science & Aquaculture, 29(4), 549-565. https://doi.org/10.1080/23308249.2020.1833833
Ahmed, N., & Turchini, G. M. (2021). The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production. Sustainability Science, 16(4), 1375-1390. https://doi.org/10.1007/s11625-021-00924-z
Arunrat, N., Sansupa, C., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2022). Soil Microbial Diversity and Community Composition in Rice–Fish Co-Culture and Rice Monoculture Farming System. Biology, 11(8), 1242. https://www.mdpi.com/2079-7737/11/8/1242
Bambaradeniya, C. N. B., Edirisinghe, J. P., De Silva, D. N., Gunatilleke, C. V. S., Ranawana, K. B., & Wijekoon, S. (2004). Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodiversity & Conservation, 13(9), 1715-1753. https://doi.org/https://10.1023/B:BIOC.0000029331.92656.de
Berg, H. (2002). Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—economic and ecological considerations. Ecological Economics, 41(1), 95-107. https://doi.org/https://doi.org/10.1016/S0921-8009(02)00027-7
Berg, H., & Tam, N. T. (2012). Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers intheMekong Delta, Vietnam. International Journal of Pest Management, 58(2), 153-164. https://doi.org/https://10.1080/09670874.2012.672776
Bharucha, Z., & Pretty, J. (2010). The roles and values of wild foods in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2913-2926. https://doi.org/https://doi:10.1098/rstb.2010.0123
Bosma, R. H., Nhan, D. K., Udo, H. M. J., & Kaymak, U. (2012). Factors affecting farmers’ adoption of integrated rice–fish farming systems in the Mekong delta, Vietnam [https://doi.org/10.1111/j.1753-5131.2012.01069.x]. Reviews in Aquaculture, 4(3), 178-190. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01069.x
Breukelaar, A. W., Lammens, E. H. R. R., Breteler, J. G. P. K., & Tatrai, I. (1994). Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology, 32(1), 113-121. https://doi.org/https://doi.org/10.1111/j.1365-2427.1994.tb00871.x
Bunting, S. W., Kundu, N., & Ahmed, N. (2017). Evaluating the contribution of diversified shrimp-rice agroecosystems in Bangladesh and West Bengal, India to social-ecological resilience. Ocean & Coastal Management, 148, 63-74. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2017.07.010
De Silva, S. S., & Davy, F. B. (2010). Aquaculture successes in Asia: contributing to sustained development and poverty alleviation. In Success stories in Asian aquaculture (pp. 1-14). Springer.
Dey, A., Sarma, K., Kumar, U., Mohanty, S., Kumar, T., & Bhatt, B. P. (2019). Prospects of rice-fish farming system for low lying areas in Bihar, India. Organic Agriculture, 9(1), 99-106. https://doi.org/https://10.1007/s13165-017-0204-8
FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome., 224.
FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/https://doi.org/10.4060/cc0461en
Fernando, C. H. (1993). Rice field ecology and fish culture — an overview. Hydrobiologia, 259(2), 91-113. https://doi.org/https://10.1007/BF00008375
Frei, M., & Becker, K. (2005). Integrated rice-fish culture: Coupled production saves resources [https://doi.org/10.1111/j.1477-8947.2005.00122.x]. Natural Resources Forum, 29(2), 135-143. https://doi.org/https://doi.org/10.1111/j.1477-8947.2005.00122.x
Frei, M., Razzak, M. A., Hossain, M. M., Oehme, M., Dewan, S., & Becker, K. (2007). Performance of common carp, Cyprinus carpio L. and Nile tilapia, Oreochromis niloticus (L.) in integrated rice–fish culture in Bangladesh. Aquaculture, 262(2), 250-259. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.11.019
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. https://doi.org/https://10.1126/science.1185383
Gomez, K. A. (1972). Techniques for field experiments with rice. Int. Rice Res. Inst.
Hazra, K., Swain, D., Bohra, A., Singh, S., Kumar, N., & Nath, C. (2018). Organic rice: potential production strategies, challenges and
prospects. Organic agriculture, 8(1), 39-56. https://doi.org/https://doi.org/10.1007/s13165-016-0172-4
Kathiresan, R. M. (2007). Integration of elements of a farming system for sustainable weed and pest management in the tropics. Crop Protection, 26(3), 424-429. https://doi.org/https://doi.org/10.1016/j.cropro.2005.11.015
Lu, J., & Li, X. (2006). Review of rice–fish-farming systems in China — One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS). Aquaculture, 260(1), 106-113. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.05.059
Mak, S. (2001). Continued innovation in a Cambodian rice-based farming system: farmer testing and recombination of new elements. Agricultural Systems, 69(1), 137-149. https://doi.org/https://doi.org/10.1016/S0308-521X(01)00022-1
Mirhaj, M., Boit, A., Razzak, M. A., & Wahab, M. A. (2013). Yield performance comparison between cultures of rice cum prawn (Macrobrachium rosenbergii) and rice cum fish (Cyprinus carpio, Oreochromis niloticus) in North-Eastern Bangladesh. Aquaculture, 392-395, 26-33. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.01.038
Mishra, A., Ketelaar, J. W., Uphoff, N., & Whitten, M. (2021). Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: evaluating impacts of system of rice intensification with special reference to rainfed agriculture. International Journal of Agricultural Sustainability, 19(2), 152-174. https://doi.org/https://doi.org/10.1080/14735903.2020.1866852
Mishra, A., Kumar, P., & Noble, A. (2013). Assessing the potential of SRI management principles and the FFS approach in Northeast Thailand for sustainable rice intensification in the context of climate change. International Journal of Agricultural Sustainability, 11(1), 4-22. https://doi.org/10.1080/14735903.2012.658648
MOF. (2020). Annual Report, Ministry of Fisheries, Colombo.
Mohanty, R. K., Verma, H. N., & Brahmanand, P. S. (2004). Performance evaluation of rice–fish integration system in rainfed medium land ecosystem. Aquaculture, 230(1), 125-135. https://doi.org/https://doi.org/10.1016/S0044-8486(03)00423-X
Nayak, P. K., Nayak, A. K., Panda, B. B., Lal, B., Gautam, P., Poonam, A., Shahid, M., Tripathi, R., Kumar, U., Mohapatra, S. D., & Jambhulkar, N. N. (2018). Ecological mechanism and diversity in rice based integrated farming system. Ecological Indicators, 91, 359-375. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.04.025
Pradheeban, L., Nissanka, N., & Suriyagoda, L. (2014). Clustering of rice (Oryza sativa L.) varieties cultivated in Jaffna District of Sri Lanka based on salt tolerance during germination and seedling stages. Tropical Agricultural Research, 25(3), 358-375. https://doi.org/ http://doi.org/10.4038/tar.v25i3.8045
Pretty, J., Sutherland, W. J., Ashby, J., Auburn, J., Baulcombe, D., Bell, M., Bentley, J., Bickersteth, S., Brown, K., Burke, J., Campbell, H., Chen, K., Crowley, E., Crute, I., Dobbelaere, D., Edwards-Jones, G., Funes-Monzote, F., Godfray, H. C. J., Griffon, M., . . . Pilgrim, S. (2010). The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 8(4), 219-236. https://doi.org/10.3763/ijas.2010.0534
Purba, S. (1998). The economics of rice-fish production systems in North Sumatra, Indonesia: an empirical and model analysis. Farming Systems and Resource Economics in the Tropics. Wissenschafverlag, Vauk, Kiel, KG., 31.
Sathoria, P., & Roy, B. (2022). Sustainable food production through integrated rice-fish farming in India: a brief review. Renewable Agriculture and Food Systems, 37(5), 527-535. https://doi.org/10.1017/S1742170522000126
Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., van der Heijden, M. G. A., Liebman, M., & Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6(45), eaba1715. https://doi.org/http://10.1126/sciadv.aba1715
Weimin, M. (2010). Recent developments in rice-fish culture in China: a holistic approach for livelihood improvement in rural areas. In D. SS & F. Davy (Eds.), Success stories in Asian aquaculture (pp. 15-40). Springer.
Yang, J.-c., Zhang, H., & Zhang, J.-h. (2012). Root Morphology and Physiology in Relation to the Yield Formation of Rice. Journal of Integrative Agriculture, 11(6), 920-926. https://doi.org/https://doi.org/10.1016/S2095-3119(12)60082-3
Yuan, J., Liao, C., Zhang, T., Guo, C., & Liu, J. (2022). Advances in Ecology Research on Integrated Rice Field Aquaculture in C
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2025 Indian Journal of Fisheries

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
The copyright of the articles published in Indian Journal of Fisheries vests with the Indian Council of Agricultural Research, who has the right to enter into any agreement with any organization in India or abroad engaged in reprography, photocopying, storage and dissemination of information contained in these journals. The Council has no objection in using the material, provided the information is being utilized for academic purpose but not for commercial use. Due credit line should be given to the ICAR where information will be utilized.