Microencapsulated spirulina fortified yoghurt - An insight into physicochemical and sensory properties
136 / 29
Keywords:
Fortification, Microencapsulation, Physicochemical properties, Spirulina, YoghurtAbstract
Yoghurt is a widely consumed dairy product having good nutritional and functional properties. Incorporation of spirulina can enhance its health benefits due to its rich protein and antioxidant activity. However, direct addition affects sensory attributes, leading to reduced consumer acceptance. This study evaluates the impact of microencapsulated Spirulina-fortified yogurt (ME-SP yoghurt) (treatment) on its physicochemical, microbiological and sensory properties, comparing it with plain yogurt as the negative control and Spirulina-incorporated yogurt (without encapsulation) as the positive control. Results indicated that spirulina incorporation increased protein content in both positive control and treatment, but negatively influenced sensory acceptance in treatment due to colour and flavour changes. Microencapsulation effectively masked undesirable sensory characteristics while preserving nutritional benefits and an increase in protein content by 4.05%. More quantity of spirulina (1%) could be added to yogurt when we used encapsulated spirulina than spirulina without encapsulation (0.5%). Textural analysis showed improved viscosity and stability in the microencapsulated sample than PC and NC. Microbiological analysis confirmed the probiotic viability in all samples within the acceptable range, based on the Food Safety and Standards Authority of India (FSSAI) and Codex Alimentarius standards for fermented dairy products. Sensory evaluation revealed that microencapsulation significantly enhanced flavour (7.9) compared to direct spirulina addition (6.96). This study concludes that microencapsulation is a viable technique to enhance the functional properties of spirulina-enriched yoghurt while maintaining its sensory appeal.
Keywords: Fortification, Microencapsulation, Physicochemical properties, Spirulina, Yoghurt
Downloads
References
1. Thakur N, Rokana N, Panwar H. 2016. Probiotics, selection criteria, safety, and role in health and disease. J Innovative Biol. 3(1): 259-270.
2. Becker EW. 2007. Micro-algae as a source of protein. Biotechnol Adv.25(2): 207-210.
3. Grosshagauer S, Kraemer K, Somoza V. 2020. The true value of Spirulina. J Agric Food Chem. 68(14): 4109-4115.
4. Annapurna VV, Deosthale YG, Bamji MS. 1991. Spirulina as a source of vitamin A. Plant Food Hum Nutr. 41:125-134.
5. Janda-Milczarek K, Szymczykowska K, Jakubczyk K. 2023. Spirulina supplements as a source of mineral nutrients in the daily diet. Appl Sci. 13(2):1011.
6. Bellahcen TO, Aamiri A, Touam I. 2020. Evaluation of Moroccan microalgae: Spirulina platensis as a potential source of natural antioxidants. J Complement Integr Med. 17(3): 20190036.
7. Podgórska-Kryszczuk I. 2024. Spirulina-an invaluable source of macro-and micronutrients with broad biological activity and application potential. Molecules. 29(22): 5387.
8. Albuquerque RCV, Silva CEDF, Carneiro WDS. 2024. Incorporation of cyanobacteria and microalgae in yoghurt: formulation challenges and nutritional, rheological, sensory, and functional implications. Appl Microbiol., 4(4): 1493-1514.
9. Mesbah, E., Matar, A., Karam-Allah, A. 2022. Functional Properties of Yoghurt Fortified with Spirulina platensis and Milk Protein Concentrate. J Food Dairy Sci. 13(1): 1-7.
10. Guarienti, C., Bender, L.E., Frota, E.G. 2021. Effects of microencapsulation on the preservation of thermal stability and antioxidant properties of Spirulina. Food Measure 15: 5657–5668.
11. Nourmohammadi N, Soleimanian-Zad S, Shekarchizadeh H. 2020. Effect of Spirulina (Arthrospira platensis) microencapsulated in alginate and whey protein concentrate addition on physicochemical and organoleptic properties of functional stirred yoghurt. J Sci Food Agric. 100(14): 5260-5268.
12. Soni, R. A., Sudhakar, K., & Rana, R. S. 2019. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep. 5: 327-336.
13. Allan-Wojtas, P., Hansen, L. T., & Paulson, A. T. 2008. Microstructural studies of probiotic bacteria-loaded alginate microcapsules using standard electron microscopy techniques and anhydrous fixation. LWT. 41(1): 101-108.
14. Gbassi, G. K., Vandamme, T., Ennahar, S., & Marchioni, E. 2009. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J food microbiol. 129(1): 103-105.
15. Karadeniz, M., Sahin, S., & Sumnu, G. 2018. Enhancement of storage stability of wheat germ oil by encapsulation. Ind. Crops Prod. 114: 14-18.
16. Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. 2012. Encapsulation of lipophilic bioactive compounds using whey protein concentrate and gum arabic as wall materials in spray drying. Food Bioprocess Technol. 5(8): 2676-2687.
17. Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S., & Souza-Soares, L. A. 2014. Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. Int. Food Res. J. 21(6): 2201.
18. Mokarram RR, Mortazavi SA, Najafi MH and Shahidi F. 2009. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res Int. 42: 1040-1045
19. AOAC. 2005. Official method of Analysis. (18th Eds.),Association of Officiating Analytical Chemists, Washington DC, 935.14 -992.24 pp.
20. Walstra, P. 1993. The syneresis of curd. Cheese Chem. Phys. Microbiol. 1: 141-191.
21. Marth, E. H. 1978. Standard Methods for the Examination of Dairy Products. (14th Eds.), American Public Health Association. 1015 pp.
22. Khalil, A. H., & Mansour, E. H. 1998. Alginate encapsulated bifidobacteria survival in mayonnaise. J. of Food Sci. 63(4): 702-705.
23. Zamri NAS, Kamaruding NA, Shaharuddin S. 2023. Ameliorative effects of microencapsulated Spirulina platensis in beverage; physicochemical, simulated release, and organoleptic properties. Nutr Food Sci. 53(8): 1279-1292.
24. Abd El-Salam, M. H., & El-Shibiny, S. 2015. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci Technol. 95: 393-412.
25. González-Reza, R. M., García-Betanzos, C. I., Sánchez-Valdes, L. I., Quintanar-Guerrero, D., Cornejo-Villegas, M. A., & Zambrano-Zaragoza, M. L. 2018. The functionalization of nanostructures and their potential applications in edible coatings. Coatings. 8(5): 160.
26. de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J. 20(4): 292-302.
27. Gonçalves, A., Estevinho, B. N., & Rocha, F. 2021. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci Technol. 114, 510-520.
28. Bauer-Estrada, K., Sandoval-Cuellar, C., Rojas-Muñoz, Y., & Quintanilla-Carvajal, M. X. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: Improving health status through functional food. Food Funct. 2023, 14(1), 32-55.
29. Chai, J., Jiang, P., Wang, P., Jiang, Y., Li, D., Bao, W& Li, Y. 2018. The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends Food Sci Technol. 78: 144-154.
30. Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. 2020. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants. 9(10): 923.
31. McClements, D. J. 2015. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci. 219: 27-53.
32. Iatrou, A. M., Michailidou, S., Papadopoulos, G. A., Afaloniati, H., Lagou, M. K., Kiritsi, M. & Fortomaris, P. 2023. Effects of dietary supplementation of Spirulina platensis on the immune system, intestinal bacterial microbiome and skin traits of mink. Animals. 13(2): 190.
33. Bortolini, D. G., Maciel, G. M., Fernandes, I. D. A. A., Pedro, A. C., Rubio, F. T. V., Branco, I. G., & Haminiuk, C. W. I. 2022. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem Mol Sci. 5: 100134.
34. Zhang, H., Jiang, F., Zhang, J., Wang, W., Li, L., & Yan, J. 2022. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol. 204: 169-192.
35. Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. 2016. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Dry. Technol., 34(5): 508-523.
36. Nixon, J. R. 2019. Release characteristics of microcapsules. Biomedical Applications of Microencapsulation CRC Press (1st Eds.), Boca Raton. 19-52 pp.
37. Trojer, M. A., Nordstierna, L., Bergek, J., Blanck, H., Holmberg, K., & Nyden, M. 2015. Use of microcapsules as controlled release devices for coatings. Adv Colloid Interface Sci. 222: 18-43.
38. Liu, W. Y., Hsieh, Y. S., Ko, H. H., & Wu, Y. T. 2023. Formulation approaches to crystalline status modification for carotenoids: Impacts on dissolution, stability, bioavailability, and bioactivities. Pharmaceutics. 15(2): 485.
39. Marjanović B, Benković M, Jurina T, Sokač Cvetnić T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A. 2024. Bioactive Compounds from Spirulina spp.-Nutritional Value, Extraction, and Application in Food Industry. Separations. 11(9): 257.
40. Machado AR, Silva PMP, Vicente AA, Souza-Soares LA, Pinheiro AC, Cerqueira MA. 2022. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers14(21): 4759.
41. Bortolini DG, Maciel GM, Fernandes IAA. 2022. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem 5: 100134.
42. Pan-Utai, W., & Iamtham, S. 2020. Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technol Biotechnol. 58(4): 423-432
43. Malik, Priyanka & Kempanna, C & Murthy, Narasimha & Anjum. 2013. Quality Characteristics of Yoghurt Enriched with Spirulina Powder. Mysore J Agric Sci. 47: 354-359
44. Beal, C., Skokanova, J., Latrille, E., Martin, N., & Corrieu, G. 1999. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yoghurt. J. Dairy Sci. 82(4): 673-681.
45. Sengupta, S., Koley, H., Dutta, S., & Bhowal, J. 2018. Hypocholesterolemic effect of Spirulina platensis (SP) fortified functional soy yoghurts on diet-induced hypercholesterolemia. J. Funct. Foods. 48: 54-64.
46. Maag P, Dirr S, Özmutlu Karslioglu Ö. 2022. Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying. Foods. 11(13):1922.
47. Krasaekoopt, W., Bhandari, B., & Deeth, H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13(1): 3-13.
48. Mousa, A., Liu, X. M., Chen, Y. Q., Zhang, H., & Chen, W. 2014. Evaluation of physiochemical, textural, microbiological and sensory characteristics in set yogurt reinforced by microencapsulated Bifidobacterium bifidum F-35. Int J Food Sci Technol. 49(7): 1673-1679.
49. Arab M, Yousefi M, Khanniri E, Azari M, Ghasemzadeh-Mohammadi V, Mollakhalili-Meybodi N. 2023. A comprehensive review on yogurt syneresis: effect of processing conditions and added additives. J Food Sci Technol. 60(6): 1656-1665.
50. Afzaal, M., Saeed, F., Hussain, M., Ismail, Z., Siddeeg, A., Ammar, A. F., & Aljobair, M. O. 2022. Influence of encapsulation on the survival of probiotics in food matrix under simulated stress conditions. Saudi J Biol Sci. 29(9): 103394.
51. Rani, R., Dharaiya, C. N., Unnikrishnan, V., & Singh, B. 2012. Factors affecting syneresis from yoghurt for preparation of chakka. Indian J. Dairy Sci. 65(2): 135.
52. Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., & Abdelkafi, S. 2017. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yoghurt during fermentation and storage. LWT. 84: 323-330.
53. Zamri, N.A.S., Kamaruding, N.A. and Shaharuddin, S. 2023. "Ameliorative effects of microencapsulated Spirulina platensis in beverage; physicochemical, simulated release, and organoleptic properties", Nutr. Food Sci. 53(8),1279-1292.
54. D. Guerrero, R., WS Heng, P., & P. Tumolva, T. 2020. Evaluation of Protein Microencapsulation Efficiency in Alginate/Hydroxyethyl Cellulose Polymer Composite. Asian J. Chem. 32(11): 2904–2910.
55. Chen MY, Zheng W, Dong QY, Li ZH, Shi LE, Tang ZX. 2014. Activity of encapsulated Lactobacillus bulgaricus in alginate-whey protein microspheres. Braz. Arch. Biol. Technol. 57(5):736-41.
56. Burgain J, Gaiani C, Linder M, Scher J. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 104(4): 467-83.
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2025 Indian Journal of Fisheries

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
The copyright of the articles published in Indian Journal of Fisheries vests with the Indian Council of Agricultural Research, who has the right to enter into any agreement with any organization in India or abroad engaged in reprography, photocopying, storage and dissemination of information contained in these journals. The Council has no objection in using the material, provided the information is being utilized for academic purpose but not for commercial use. Due credit line should be given to the ICAR where information will be utilized.