Characterization of new microsatellite markers from sugarcane (Saccharum officinarum) transcriptome


Abstract views: 139 / PDF downloads: 52

Authors

  • Yijing Gao Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Hui Zhou Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Junxian Liu Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Jingchao Lei Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Weixing Duan Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Cuifang Yang Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Shan Zhou Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Xiang Li Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Gemin Zhang Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Baoqing Zhang Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Hongwei Tan Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Zeping Wang Guangxi Academy of Agricultural Sciences, Nanning 530 007, China
  • Yangrui Li Guangxi Academy of Agricultural Sciences, Nanning 530 007, China

https://doi.org/10.56093/ijas.v90i5.104330

Keywords:

EST, Microsatellites, Sugarcane, Transcriptome

Abstract

Microsatellites, or simple sequence repeats (SSR), developed by expressed sequence tag (EST) databases is an economical and efficient tools that can be used to perform genetic investigations at a functional level. Here, a new sugarcane database of transcriptome from our variety, GT35, was examined for the presence of SSRs. To test the utility of EST-derived SSR markers, a total of 51 new EST-SSRs were identified for possible use as potential genetic markers from no redundant SSR-positive ESTs, which were unmapped with the sequences available in the NCBI’EST database of sugarcane by BLASTN. Polymorphisms of the identified 51 EST-SSR markers were evaluated in 21 sugarcane genotypes, planted and collected in 2013 at Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences (SRI-GXAAS) in China. High polymorphisms were detected in terms of number of alleles ranging from 5-36 with an average of 16.8 per locus and polymorphism information content values ranging from 0.74 to 0.95 with a mean of 0.92. Average transferability to Erianthus arundinaceus and Narenga porphyrocoma was 23.9% and 34.4%, respectively. The ability to establish genetic relationship was analyzed by cluster analysis, the result of which revealed that the major grouping was in accordance with taxonomical classification. The development of new EST-SSR markers presented in this work will have important implications for genetic analysis and breeding.

Downloads

Download data is not yet available.

References

Anderson J A, Churchill G A, Autrique J E, Tanksley S D and Sorrells M E. 1993. Optimizing parental selection for genetic linkage maps. Genome 36(1): 181-6. DOI: https://doi.org/10.1139/g93-024

Carson D L and Botha F C. 2000. Preliminary analysis of expressed sequence tags for sugarcane. Crop Science 40(6): 1769-79. DOI: https://doi.org/10.2135/cropsci2000.4061769x

Chen R, Xu L, Lin Y, Deng Z, Zhang M, Luo J, Zhang H, Gao S, Xu J, Xu L, Que Y, Chen P, Yuan Z and Lin G. 2011. Modern Sugarcane Genetic Breeding, pp 20-24. China Agriculture Press, Beijing, China.

Cordeiro G M, Casu R, McIntyre C L, Manners J M and Henry R J. 2001. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science 160(6): 1115-23. DOI: https://doi.org/10.1016/S0168-9452(01)00365-X

D'Hont A, Grivet L, Feldmann P, Rao S, Berding N and Glaszmann J C. 1996. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Moletical and Genied Genetics 250(4): 405-13. DOI: https://doi.org/10.1007/BF02174028

Huang D L, Qin X L, Liao Q, Gao Y J and Fang F X. 2010. Simple and rapid procedure for isolation of high quality genomic DNA from sugarcane. Biotechnology Bulletin 20(5): 101–6.

Huang D L, Gao Y J, Gui Y Y, Chen Z L, Qin C X, Wang M, Liao Q, Yang L T and Li Y R. 2016. Transcriptome of high-sucrose sugarcane variety GT35. Sugar Tech 18(5): 520–8. DOI: https://doi.org/10.1007/s12355-015-0420-z

Jaccard P. 1901. Etude de la distribution florale dans une portion des Alpes et du Jura. Bulletin De La Societe Vaudoise Des Sciences Naturelles 37(142): 547-79.

Kota R, Varshney R K, Thiel T, Dehmer K J and Graner A. 2001. Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135(2-3): 145-51. DOI: https://doi.org/10.1111/j.1601-5223.2001.00145.x

Li Y R. 2010. Modern Sugarcane Science, pp 1-4. China Agriculture Press, Beijing, China.

Marconi T G, Costa E A, Miranda H R, Mancini M C, Cardoso- Silva C B, Oliveira K M, Pinto L R, Mollinari M, Garcia A A F and Souza A P. 2011. Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Research Notes 4: 264. DOI: https://doi.org/10.1186/1756-0500-4-264

Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M and Sourdille P. 2004. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theoretical and Applied Genetics 109(4): 800-5. DOI: https://doi.org/10.1007/s00122-004-1685-x

Oliveira K M, Pinto L R, Marconi T G, Margarido G R A, Pastina M M, Teixeira L H M, Figueira A V, Ulian E C, Garcia A A F and Souza A P. 2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular Breeding 20(3): 189-208. DOI: https://doi.org/10.1007/s11032-007-9082-1

Oliveira K M, Pinto L R, Marconi T G, Mollinari M, Ulian E C, Chabregas S M, Falco M C, Burnquist W, Garcia A A F and Souza A P. 2009. Characterization of new polymorphic functional markers for sugarcane. Genome 52(2): 191-209. DOI: https://doi.org/10.1139/G08-105

Pinto L R, Oliveira K M, Ulian E C, Garcia A A and Souza A P. 2004. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47(5): 795-804. DOI: https://doi.org/10.1139/g04-055

Pinto L R, Oliveira K M, Marconi T, Garcia A A F, Ulian E C and Souza A P. 2010. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding 125(4): 378-84. DOI: https://doi.org/10.1111/j.1439-0523.2006.01227.x

Silva J A G D. 2001. Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology 24(1-4): 155-9. DOI: https://doi.org/10.1590/S1415-47572001000100021

Silva D C, Souza M C P D, Filho L S C D, Santos J M D Barbosa G V D S and Almeida C. 2012. New polymorphic EST-SSR markers in sugarcane. Sugar Tech 14(4): 357-63. DOI: https://doi.org/10.1007/s12355-012-0184-7

Thiel T, Michalek W, Varshney R K and Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106(3): 411-22. DOI: https://doi.org/10.1007/s00122-002-1031-0

Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B and Sorrells M E.2004. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47(5): 805-18. DOI: https://doi.org/10.1139/g04-057

Downloads

Submitted

2020-09-03

Published

2020-09-04

Issue

Section

Articles

How to Cite

Gao, Y., Zhou, H., Liu, J., Lei, J., Duan, W., Yang, C., Zhou, S., Li, X., Zhang, G., Zhang, B., Tan, H., Wang, Z., & Li, Y. (2020). Characterization of new microsatellite markers from sugarcane (Saccharum officinarum) transcriptome. The Indian Journal of Agricultural Sciences, 90(5), 860-867. https://doi.org/10.56093/ijas.v90i5.104330
Citation