Constitutive expression of an endogenous sugar transporter gene SWEET11 in Indian mustard (Brassica juncea) and its effect thereof on mustard aphids


228 / 123

Authors

  • Lianthan Zauva Ph D student, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110 012, India
  • Deepa Dhatwalia JRF, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110 012, India
  • S Subramanian Principal Scientist, Division of Entomology, IARI, New Delhi 110012
  • Rohit Chamola Chief Technical Officer, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110 012, India
  • Ramcharan Bhattacharya Principal Scientist and corresponding author, ICAR-National Institute for Plant Biotechnology, New Delhi 110012

https://doi.org/10.56093/ijas.v90i9.106619

Keywords:

Indian mustard, Mustard aphid, Nonhost response, Sugar transporter, SWEET

Abstract

One of the major oil yielding crops Indian mustard [Brassica juncea (L.) Czern. & Coss.] is highly susceptible to mustard aphid, a hemipteran sap sucking insect-pest. Leaf-transcriptome of mustard treated with different aphid species as host and non-host revealed variable expression of three sugar transporter genes. One of these transporters BjSWEET11 was constitutively expressed under a CaMV 35S promoter in B. juncea through Agrobacterium-mediated plant transformation. The transgenic plants after requisite molecular analysis for the presence and expression of the introduced gene were assayed for their deterring effects on the infestation by mustard aphid (Lipaphis erysimi). Attenuating effect of the enhanced BjSWEET11 expression on multiplication and population growth of mustard aphids demonstrated likely involvement of this transporter in endogenous plant defense mechanism.

Downloads

Download data is not yet available.

References

Aminedi R, Dhatwalia D, Jain V and Bhattacharya R. 2019. High efficiency in planta transformation of Indian mustard (Brassica juncea) based on spraying of floral buds. Plant Cell, Tissue and Organ Culture138(2): 229-37. DOI: https://doi.org/10.1007/s11240-019-01618-2

Arora R A and Dhawan A K. 2013. Climate change and insect pest management. Integrated Pest Management, pp 44-60.

Dhawan A K, Singh B, Bhullar M B and Arora R A (Eds). Scientific Publisher, India.

Bhatia V, Uniyal P L and Bhattacharya R. 2011. Aphid resistance in Brassica crops: challenges, biotechnological progress and emerging possibilities. Biotechnology Advances 29(6): 879-88. DOI: https://doi.org/10.1016/j.biotechadv.2011.07.005

Campe R, Langenbach C, Leissing F, Popescu G V, Popescu S C, Goellner K, Beckers G J and Conrath U. 2016. ABC transporter PEN 3/PDR 8/ABCG 36 interacts with calmodulin that, like PEN 3, is required for Arabidopsis nonhost resistance. New Phytologist 209(1): 294-306. DOI: https://doi.org/10.1111/nph.13582

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B and Chermak D. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323): 527. DOI: https://doi.org/10.1038/nature09606

Chen L Q. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. NewPhytologist 201(4): 1150-5. DOI: https://doi.org/10.1111/nph.12445

Das A, Ghosh P and Das S. 2018. Expression of Colocasia esculenta tuber agglutinin in Indian mustard provides resistance against Lipaphis erysimi and the expressed protein is non-allergenic. Plant Cell Reports 37(6): 849-63. DOI: https://doi.org/10.1007/s00299-018-2273-x

Dhaliwal G S, Arora R and Dhawan A K. 2004. Crop losses due to insect pests in Indian agriculture: an update. Indian Journal of Ecology 31(1): 1-7.

Du Y J, Yan F S, Han X L and Zhang G X. 1994. Olfaction in host plant selection of the soybean aphid Aphis glycines. Acta Entomologica Sinica 37(4): 385-92.

Edwards K, Johnstone C and Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19(6): 1349. DOI: https://doi.org/10.1093/nar/19.6.1349

Gill U S, Lee S and Mysore K S. 2015. Host versus nonhost resistance: Distinct wars with similar arsenals. Phytopathology 105: 580-87. DOI: https://doi.org/10.1094/PHYTO-11-14-0298-RVW

Gould H J. 1996. Organophosphorus insecticide resistance in aphids on year-round chrysanthemums. Plant Pathology 15(3): 109-12. DOI: https://doi.org/10.1111/j.1365-3059.1966.tb00325.x

Hogenhout S A, Ammar E D, Whitfield A E and Redinbaugh M G. 2008. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology 46: 327-59. DOI: https://doi.org/10.1146/annurev.phyto.022508.092135

Hopkins R J, van Dam N M and van Loon J J. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology 54: 57-83. DOI: https://doi.org/10.1146/annurev.ento.54.110807.090623

Jaouannet M, Morris J A, Hedley P E and Bos J I B. 2015. Characterization of Arabidopsis transcriptional responses to different aphid species reveals genes that contribute to host susceptibility and non-host resistance. PLoS Pathogens 11: e1004918. DOI: https://doi.org/10.1371/journal.ppat.1004918

Koramutla M K, Kaur A, Negi M, Venkatachalam P and Bhattacharya R. 2014. Elicitation of jasmonate-mediated host defense in Brassica juncea L. attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). Planta 240(1): 177-94. DOI: https://doi.org/10.1007/s00425-014-2073-7

Kuśnierczyk A, Winge P E, Jørstad T S, Troczyńska J, Rossiter J T and Bones A M. 2008. Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant, Cell and Environment 31(8): 1097-115. DOI: https://doi.org/10.1111/j.1365-3040.2008.01823.x

Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402-8. DOI: https://doi.org/10.1006/meth.2001.1262

Moran P J, Cheng Y, Cassell J L and Thompson G A. 2002. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry and Physiology 51: 182–203. DOI: https://doi.org/10.1002/arch.10064

Nuernberger T and Lipka V. 2005. Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology 6(3): 335-45. DOI: https://doi.org/10.1111/j.1364-3703.2005.00279.x

Patel S R, Awasthi A K and Tomar R K. 2004. Assessment of yield losses in mustard (Brassica juncea L.) due to mustard aphid (Lipaphis erysimi Kalt.) under different thermal environments in Eastern Central India. Applied Ecology and Environmental Research 2(1):1-5. DOI: https://doi.org/10.15666/aeer/02001015

Prince D C, Drurey C, Zipfel C and Hogenhout S A. 2014. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTO ALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiology 164: 2207-219. DOI: https://doi.org/10.1104/pp.114.235598

Rani S, Sharma V, Hada A, Bhattacharya R and Koundal K R. 2017. Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledons explants. Acta Physiologiae Plantarum 39: 115. DOI: https://doi.org/10.1007/s11738-017-2415-8

Sami F, Yusuf M, Faizan M, Faraz A and Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry 109: 54-61. DOI: https://doi.org/10.1016/j.plaphy.2016.09.005

Sarkar P, Jana J, Chatterjee S and Sikdar S R. 2016. Functional characterization of Rorippa indica defensin and its efficacy against Lipaphis erysimi. Springer Plus 5(1): 511. DOI: https://doi.org/10.1186/s40064-016-2144-2

Singh V, Louis J, Ayre B G, Reese J C and Shah J. 2011. TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant Journal 67(1): 94-104. DOI: https://doi.org/10.1111/j.1365-313X.2011.04583.x

Uma B and Podile A R. 2014. Overlapping sets of transcripts from host and non-host interactions of tomato are expressed early during non-host resistance. Plant Omics 7(1): 19.

Weigel D and Glazebrook J. 2006. Transformation of agrobacterium using the freeze-thaw method. CSH Protocols 7(2006): 1031-6. DOI: https://doi.org/10.1101/pdb.prot4666

Yamada K, Saijo Y, Nakagami H and Takano Y. 2016. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354(6318): 1427-30. DOI: https://doi.org/10.1126/science.aah5692

Yang J, Luo D, Yang B, Frommer W B and Eom J S. 2018.SWEET 11 and 15 as key players in seed filling in rice. New DOI: https://doi.org/10.1101/198325

Phytologist 218(2): 604-15.

Downloads

Submitted

2020-10-28

Published

2020-10-28

Issue

Section

Articles

How to Cite

Zauva, L., Dhatwalia, D., Subramanian, S., Chamola, R., & Bhattacharya, R. (2020). Constitutive expression of an endogenous sugar transporter gene SWEET11 in Indian mustard (Brassica juncea) and its effect thereof on mustard aphids. The Indian Journal of Agricultural Sciences, 90(9), 1735-1741. https://doi.org/10.56093/ijas.v90i9.106619
Citation