Designing of MRPABCC5 specific CRISPR/Cas9 construct and its transient analysis using AGRODATE technique in soybean leaf discs


284 / 149

Authors

  • SMRUTIREKHA SAHU ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • ARCHANA SACHDEV ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • MONICA JOLLY ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • VEDA KRISHNAN ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • ASHISH MARATHE ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • JOSHNA JOSE ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
  • SHELLY PRAVEEN ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

https://doi.org/10.56093/ijas.v90i10.107976

Keywords:

CRISPR/Cas9, MRP ABC transporter, Phytic acid, Soybean

Abstract

CRISPR/Cas9 has emerged as a tool of choice to precisely edit the genes pivotal for crop improvement programmes and gene function analysis. However, one of the puzzling aspects for utilization of this technique is the stability and efficiency of the construct. In the present study, we have designed the constructs dictated by certain parameters using web tools such as CRISPRscan, RNAfold webserver and OligoAnalyzer. The construct was transiently expressed in the soybean leaf discs using a vacuum based AGRODATE method (Agrobacterium mediated Transient Expression Assay) to edit the phytate transporter gene, i.e. GmABCC5. We observed an insertion of a nucleotide producing a SNP change in an analysed leaf disc sample depicting the efficacy of the construct.

Downloads

Download data is not yet available.

References

Bortesi L and Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33(1): 41-52. DOI: https://doi.org/10.1016/j.biotechadv.2014.12.006

Chu V T, Graf R, Wirtz T, Weber T, Favret J, Li X and Kühn R. 2016. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Science 113(44): 12514-12519. DOI: https://doi.org/10.1073/pnas.1613884113

Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M. Smith I and Root D E. 2014. Rational design of highly active sgRNAs for CRISPRCas9–mediated gene inactivation. Nature Biotechnology 32(12): 1262. DOI: https://doi.org/10.1038/nbt.3026

Gruber A R, Lorenz R, Bernhart S H, Neuböck R and Hofacker I L. 2008. The vienna RNA websuite. Nucleic Acids Research 36(suppl_2) : W70-W74. DOI: https://doi.org/10.1093/nar/gkn188

Hada A, Krishnan V, Jaabir M M, Kumari A, Jolly M, Praveen S and Sachdev A 2018. Improved Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merr.] following optimization of culture conditions and mechanical techniques. In Vitro Cellular & Developmental Biology-Plant 54(6): 672-688. DOI: https://doi.org/10.1007/s11627-018-9944-8

Guidarelli M and Baraldi E. 2015. Transient transformation meets gene function discovery: the strawberry fruit case. Frontiers in Plant Science 6: 444. DOI: https://doi.org/10.3389/fpls.2015.00444

Krishnan V, Jose J, Jolly M, Vinutha T, Kumar R, Manickavasagam M and Sachdev A. 2019. ‘AGRODATE’: a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. Journal of Plant Biochemistry and Biotechnology 1-11. DOI: https://doi.org/10.1007/s13562-019-00536-w

Kumar A, Kumar V, Krishnan V, Hada A, Marathe A, Parameswaran C and Sachdev A. 2019. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Scientific Reports 9(1): 7744. DOI: https://doi.org/10.1038/s41598-019-44255-7

Kumari S, Jolly M, Krishnan V, Dahuja A, and Sachdev A. 2012. Spatial and temporal expression analysis of D-myo-inositol 3-phosphate synthase (MIPS) gene family in Glycine max. African Journal of Biotechnology 11(98) : 16443-16454.

Marathe A, Krishnan V, Vinutha T, Dahuja A, Jolly M and Sachdev A. 2018. Exploring the role of Inositol 1, 3, 4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. coli. Plant Physiology and Biochemistry 123 : 331-341. DOI: https://doi.org/10.1016/j.plaphy.2017.12.026

Michno J M, Wang X, Liu J, Curtin S J, Kono T J, and Stupar R M. 2015. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops and Food 6(4) : 243-252. DOI: https://doi.org/10.1080/21645698.2015.1106063

Moreno-Mateos M A, Vejnar C E, Beaudoin J D, Fernandez J P, Mis E K, Khokha M K and Giraldez A J. 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods 12(10) : 982. DOI: https://doi.org/10.1038/nmeth.3543

Nekrasov V, Staskawicz B, Weigel D, Jones J D and Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31(8): 691. DOI: https://doi.org/10.1038/nbt.2655

Pandey V, Krishnan V, Basak N, Marathe A, Thimmegowda V, Dahuja A and Sachdev A. 2018. Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops. 3 Biotech 8(1): 54. DOI: https://doi.org/10.1007/s13205-017-1053-6

Punjabi M, Bharadvaja N, Jolly M, Dahuja A and Sachdev A. 2018. Development and evaluation of low phytic acid soybean by siRNA triggered seed specific silencing of inositol polyphosphate 6-/3-/5-kinase gene. Frontiers in Plant Science: 9. DOI: https://doi.org/10.3389/fpls.2018.00804

Raboy V, Dickinson D B and Below F E. 1984. Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Science 24(3): 431-434. DOI: https://doi.org/10.2135/cropsci1984.0011183X002400030001x

Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T and Ertl D S. 2000. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology 124(1): 355-368. DOI: https://doi.org/10.1104/pp.124.1.355

Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y and Deng P. 2014. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports 9(3): 1151-1162. DOI: https://doi.org/10.1016/j.celrep.2014.09.044

Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M and Glassman K. 2007. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology 25(8): 930. DOI: https://doi.org/10.1038/nbt1322

Sparkes I A, Runions J, Kearns A and Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1(4): 2019. DOI: https://doi.org/10.1038/nprot.2006.286

Downloads

Submitted

2020-12-04

Published

2020-12-04

Issue

Section

Articles

How to Cite

SAHU, S., SACHDEV, A., JOLLY, M., KRISHNAN, V., MARATHE, A., JOSE, J., & PRAVEEN, S. (2020). Designing of MRPABCC5 specific CRISPR/Cas9 construct and its transient analysis using AGRODATE technique in soybean leaf discs. The Indian Journal of Agricultural Sciences, 90(10), 1969-1974. https://doi.org/10.56093/ijas.v90i10.107976
Citation