Genetic diversity of cucumber (Cucumis sativus) accessions differing in quantitative traits and microsatellite markers


347 / 246

Authors

  • RAHUL KUMAR Ph D Scholar, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
  • A D MUNSHI Principal Scientist, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
  • T K BEHERA Professor and Principal Scientist, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
  • G S JAT Scientist, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
  • H CHOUDHARY Principal Scientist, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
  • MAMTA SINGH Scientist, Division of Germplasm Conservation, ICARNational Bureau of Plant Genetic Resources, New Delhi 110012, India
  • AKSHAY TALUKDAR Principal Scientist, Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India 110012

https://doi.org/10.56093/ijas.v90i11.108583

Keywords:

Cucumis sativus, Genetic diversity, Morphological, Simple sequence repeat (SSR) Morphological markers

Abstract

The genetic diversity among 78 cucumber (Cucumis sativus L.) accessions was analyzed using 8 morphological traits and 60 SSR markers under two environmental (open field and protected cultivation) conditions. D2 analysis had grouped the 78 accessions in five major clusters. Cluster I comprised 51 accessions followed by 14, 5, 7 and 1 in cluster II, III, IV, and V respectively. The variation was observed for morphological characters like days to first female flower anthesis (37.53-58.64), days to first fruit harvest (47.28-67.43), fruit length (9.47-26.84 cm), average fruit weight (67.46-417.56 g) and vine length (96.23-170.13 cm). The first four principal components explained 87.72% of the total variation. A total of 171 alleles were amplified with a mean of 2.85 alleles per locus. The polymorphism information content (PIC) varied from 0.05 (UW084478) to 0.59 (UW084186) with a mean value of 0.36. The major allele frequency, gene diversity, and heterozygosity of these SSR markers were 0.36-0.97, 0.05-0.67 and 0.00-0.68, respectively. The dendrogram based on SSR marker analysis classified the 78 genotypes into two major groups those were subdivided into ten subgroups. Collectively, the information obtained will provide a valuable resource for germplasm conservation, genetic analyses and gene discovery in cucumber breeding.

Downloads

Download data is not yet available.

References

Behera T K, Staub J E, Behera S, Delannay I Y and Chen J F. 2011. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica 178: 261–272. DOI: https://doi.org/10.1007/s10681-010-0315-8

Collard B C Y, Jahufer M Z Z, Brouwer J B and Pang E C K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169-196. DOI: https://doi.org/10.1007/s10681-005-1681-5

Dar A A, Mahajan R, Lay P and Sharma S. 2017. Genetic diversity and population structure of Cucumis sativus L. by using SSR markers. 3Biotech 7(307): 2-12. DOI: https://doi.org/10.1007/s13205-017-0944-x

Huang S, Li R, Zhang Z, Li L and Gu X. 2009. The genome of the cucumber Cucumis sativus L. Nature Genetics 41:1275-1281. DOI: https://doi.org/10.1038/ng.475

Jat G S, Munshi A D, Behera T K and Tomar B S. 2016. Combining ability estimation of gynoecious and monoecious hybrids for yield and earliness in cucumber (Cucumis sativus L). Indian Journal of Agricultural Sciences 86(3): 399–403.

Jat G S, Munshi A D, Behera T K, Choudhary H, Dash P, Ravindran A and Kumari S. 2018. Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.). Journal of Horticultural Science and Biotechnology 94 (1): 24-32. DOI: https://doi.org/10.1080/14620316.2018.1449671

Jat G S, Munshi A D, Behera T K, Choudhary H and Dev B. 2015. Exploitation of heterosis in cucumber for earliness, yield and yield components utilizing gynoecious lines. Indian Journal of Horticulture 72(4): 494-499. DOI: https://doi.org/10.5958/0974-0112.2015.00112.7

Liu K and Muse S V. 2004. Power Marker: new genetic data analysis software version 2.7 (http://www.powermarker. net).

Lv J, Qi J, Shi Q, Shen D, Zhang S and Shao G. 2012. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One. doi:10.1371/journal.pone.0046919. DOI: https://doi.org/10.1371/journal.pone.0046919

Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng Y Q and Gu X F. 2011. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182(2): 167–176. DOI: https://doi.org/10.1007/s10681-011-0410-5

Mahalanobis P C. 1928. A statistical study of the Chinese head. Man in India 8: 107-122.

Hua J, Zhoub X and Li J. 2010. Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Scientia Horticulturae 125: 534–538. DOI: https://doi.org/10.1016/j.scienta.2010.03.021

Pandey S, Ansari WA, Pandey M and Singh B. 2018. Genetic diversity of cucumber estimated by morpho-physiological and EST-SSR markers. Physiology and Molecular Biology of Plants 0974-0430 UR - https://doi.org/10.1007/s122

Pandey S, Ansari W A, Mishra V K, Singh A K and Singh M. 2013. Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochemistry and Systematic Ecology 51: 19–27. DOI: https://doi.org/10.1016/j.bse.2013.08.002

Peakall R and Smouse P. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28: 2537-2539. DOI: https://doi.org/10.1093/bioinformatics/bts460

SAS Institute (2007) SAS/STAT user guide: Statistics version 9.2 SAS Inst Cary

Staub J E, Serquen F C and McCreight J D. 1997. Genetic diversity in cucumber (Cucumis sativus L.): III. An evaluation of Indian accessions. Genetic Resources and Crop Evaluation 44: 315–326. DOI: https://doi.org/10.1023/A:1008639103328

Wang X, Bao K, Reddy U K, Bai Y, Hammar S A, Jiao C, Wehner T C, Ramírez-Madera A O, Weng Y, Grumet R and Fe Z. 2018. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horticulture Research 5: 64 DOI 10.1038/s41438-018-0080-8. DOI: https://doi.org/10.1038/s41438-018-0080-8

Watcharawongpaiboon N and Chunwongse J. 2008. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus L.). Plant Breeding 127: 74–81.

Yang L, Li D, Li Y, Gu X, Huang S, Mas J G and Weng Y. 2013. A 1 681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biology 53(13): 1-14. DOI: https://doi.org/10.1186/1471-2229-13-53

Yang Y T, Liu Y, Qi F, Xu L L and Li X Z. 2015. Assessment of genetic diversity of cucumber cultivars in China based on simple sequence repeats and fruit traits. Genetics and Molecular Research 14: 19028–19039 DOI: https://doi.org/10.4238/2015.December.29.10

Downloads

Submitted

2020-12-16

Published

2020-12-16

Issue

Section

Articles

How to Cite

KUMAR, R., MUNSHI, A. D., BEHERA, T. K., JAT, G. S., CHOUDHARY, H., SINGH, M., & TALUKDAR, A. (2020). Genetic diversity of cucumber (Cucumis sativus) accessions differing in quantitative traits and microsatellite markers. The Indian Journal of Agricultural Sciences, 90(11), 2161-2167. https://doi.org/10.56093/ijas.v90i11.108583
Citation