Evaluation of RISAT-1 data for soil moisture retrieval in semi-arid tropics of India


Abstract views: 133 / PDF downloads: 74

Authors

  • PUSHPANJALI PUSHPANJALI ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana 500 059, India
  • JOSILY SAMUEL ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana 500 059, India
  • KISHORI LAL SHARMA ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana 500 059, India
  • PRABHAT KUMAR PANKAJ ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana 500 059, India
  • KARUNAKARAN KARTHIKEYAN ICAR-National Bureau of Soil Survey and Land Use Planning, Nagpur
  • KOTHA SAMMI REDDY ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana 500 059, India

https://doi.org/10.56093/ijas.v91i12.120799

Keywords:

Microwave remote sensing, RISAT-1, Soil moisture

Abstract

The selection of better polarisation and incidence angle for soil moisture retrieval using RISAT-1 microwave data was experimented at Hayathnagar research farm of ICAR-CRIDA, Hyderabad. Fine Resolution Sensor (FRS-1) data (spatial resolution of 3 m) and Medium Resolution ScanSAR (MRS) data (spatial resolution of 25 m) acquired from circular and dual polarised microwave data were used for the retrieval of soil moisture and to identify the best polarisation suitable for the study area. The evaluation was carried out during 2016-17. FRS-1 data was more accurate than MRS data for the extraction of soil moisture in the study area. Circular and dual-Polarisation retrieved soil moisture values were compared with volumetric soil moisture values for assessing the better polarisation. Dual polarisation and the incident angle between 15-20 degrees with R2=0.952 performed better as compared to circular polarisation with more or less than 20 degrees' incident angle. A correction factor of -0.723 was derived and applied to FRS-1 data with less than a 20-degree incident angle for getting real soil moisture values on the spatio-temporal basis to optimize the management of natural ecosystems under climate change threat.

Downloads

Download data is not yet available.

References

Ahmed A, Zhang Y and Nichols S. 2011. Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE Reviews 2(1): 028001. DOI: https://doi.org/10.1117/1.3534910

Bousbih S, Zribi M, Pelletier C, Gorrab A, Lili-Chabaane Z, Baghdadi N and Ben Aissa N and Mougenot B. 2019. Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing 11(13): 1520. DOI: https://doi.org/10.3390/rs11131520

Charpentier M A and Groffman P M. 1992. Soil moisture variability within remote sensing pixels. Journal of Geophysical Research: Atmospheres 97(D17): 18987–995. DOI: https://doi.org/10.1029/92JD00882

Cheema M J M, Bastiaanssen W G M and Rutten M M. 2011. Validation of surface soil moisture from AMSR-E using auxiliary spatial data in the transboundary Indus basin. Journal of Hydrology 405(1-2): 137–49. DOI: https://doi.org/10.1016/j.jhydrol.2011.05.016

Das K and Paul P K. 2015. Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. Egyptian Journal of Remote Sensing and Space Science 18(2): 297–310. DOI: https://doi.org/10.1016/j.ejrs.2015.09.004

Dong J and Ochsner T E. 2018. Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research 54(3): 2199–211. DOI: https://doi.org/10.1002/2017WR021692

Dunkl I, Spring A, Friedlingstein P and Brovkin V. 2021. Process-based analysis of terrestrial carbon flux predictability. Earth System Dynamics Discussions, pp. 1-20. DOI: https://doi.org/10.5194/esd-2021-38

Grant D R. 1975. Measurement of soil moisture near the surface using a neutron moisture meter. Journal of Soil Science 26(2): 124–29. DOI: https://doi.org/10.1111/j.1365-2389.1975.tb01937.x

Hallikainen M T, Ulaby F T, Dobson M C, El-rayes M A and Wu L K. 1985. Microwave dielectric behavior of wet soil. 1: Empirical models and experimental observations. IEEE Trans. Geoscience and Remote Sensing 23: 25–34. DOI: https://doi.org/10.1109/TGRS.1985.289497

İmamoğlu M Z and Sertel E. 2016. Analysis of different interpolation methods for soil moisture mapping using field measurements and remotely sensed data. International Journal of Environment and Geoinformatics 3(3): 11–25. DOI: https://doi.org/10.30897/ijegeo.306477

Jackson R D, Idso S B and Reginato R J. 1976. Calculation of evaporation rates during the transition from energy-limiting to soil-limiting phases using albedo data. Water Resource Research 12(1): 23–26. DOI: https://doi.org/10.1029/WR012i001p00023

Lin T S and Cheng F Y. 2016. Impact of soil moisture initialization and soil texture on simulated land–atmosphere interaction in Taiwan. Journal of Hydrometeorology 17(5): 1337–55. DOI: https://doi.org/10.1175/JHM-D-15-0024.1

Palanisamy T and Vidhya R. 2018. Derivation of soil moisture using modified dubois model with field assisted surface roughness on RISAT-1 data. Earth Sciences Research Journal 22(1): 13–18.

Patel P and Srivastava H S. 2013. Ground truth planning for synthetic aperture radar (SAR): addressing various challenges using statistical approach. International Journal of Advancement in Remote Sensing, GIS and Geography 1(2): 1–17.

Pushpanjali, Pankaj P K, Josily S, Karthikeyan K and Reddy K S. 2019. Temporal and spatial estimation of soil moisture using RISAT-1 in semi-arid tropics of India. Journal of Agrometeorology 21(3): 357–61. DOI: https://doi.org/10.54386/jam.v21i3.260

Raju S, Chanzy A, Wignero J, Calvert J, Kerr Y and Laguerre L. 1995. Soil moisture and temperature profile effects on microwave emission at low frequencies. Remote Sensing of Environment 54: 85–97. DOI: https://doi.org/10.1016/0034-4257(95)00133-L

Rao S S, Sahadevan D K, Wadodkar M R, Nagaraju M S S, Chattaraj S, Joseph W and Joshi A K. 2014. Soil moisture model with multi angle and multi polarisation risat-1 data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(8): 145. DOI: https://doi.org/10.5194/isprsannals-II-8-145-2014

Rawat K S, Sehgal V K, Pradhan S and Ray S S. 2018. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India). Journal of Earth System Science 127(2): 18. DOI: https://doi.org/10.1007/s12040-018-0919-2

Rawat K S, Sehgal V K, Pradhan S and Ray S S. 2017. Retrieval and validation of soil moisture from FRS-1 data set of radar imaging satellite (RISAT-1). Arabian Journal of Geosciences 10(20): 445. DOI: https://doi.org/10.1007/s12517-017-3195-6

Santoso P B, Apriyono A and Suryani R. 2018. Inverse distance weighting interpolated soil properties and their related landslide occurrences. In MATEC Web of Conferences, Vol. 195, pp. 03013. EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201819503013

Srinivasa Rao S, Das S N, Nagaraju M S, Venugopal M V, Rajankar P, Laghate P, Reddy M S, Joshi A K and Sharma J R. 2013. Modified Dubois Model for estimating soil moisture with dual polarized SAR data. Journal of Indian Society of Remote Sensing 41(4): 865–72. DOI: https://doi.org/10.1007/s12524-013-0274-3

Srivastava H S, Patel P and Navalgund R R. 2006. How far SAR has fulfilled its expectation for soil moisture retrieval?. Microwave Remote Sensing of the Atmosphere and Environment, Proceedings of SPIE 6410: 1–12. DOI: https://doi.org/10.1117/12.693946

Thanabalan P and Vidhya R. 2018. Derivation of soil moisture using modified dubois model with field assisted surface roughness on RISAT-1 data. Earth Sciences Research Journal 22(1): 13–18. DOI: https://doi.org/10.15446/esrj.v22n1.59972

Topp G C, Davis J L and Annan A P. 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resource Research 16(3): 574–82. DOI: https://doi.org/10.1029/WR016i003p00574

Downloads

Submitted

2022-01-31

Published

2022-01-31

Issue

Section

Articles

How to Cite

PUSHPANJALI, P., SAMUEL, J., SHARMA, K. L., PANKAJ, P. K., KARTHIKEYAN, K., & REDDY, K. S. (2022). Evaluation of RISAT-1 data for soil moisture retrieval in semi-arid tropics of India. The Indian Journal of Agricultural Sciences, 91(12), 1753–1757. https://doi.org/10.56093/ijas.v91i12.120799
Citation