Biochemical profiling of tetraploid potato (Solanum tuberosum) genotypes


328 / 334 / 101

Authors

  • JAGMEET SINGH College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh image/svg+xml
  • DHARMINDER KUMAR Regional Horticultural Research and Training Station, Jachh, Kangra, Himachal Pradesh
  • VINAY BHARDWAJ ICAR-National Research Centre on Seed Spices, Ajmer, Rajasthan image/svg+xml
  • SALEJ SOOD Central Potato Research Institute, Shimla, Himachal Pradesh image/svg+xml
  • RAKESH KUMAR DAROCH College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh image/svg+xml

https://doi.org/10.56093/ijas.v94i10.140910

Keywords:

GCV, Genetic advance, Genotypes, Heritability, PCV, Traits

Abstract

An experiment was conducted out during winter (rabi) seasons of 2021–22 and 2022–23 at Litchi and Mango Research Station (Dr. Y S Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh), Nagrota Bagwan, Kangra, Himachal Pradesh to study the biochemical profiling of tetraploid potato (Solanum tuberosum L.) genotypes. The experiment comprises of 357 genotypes including varieties, advanced breeding lines and exotic germplasm belonging to the tetraploid group of potato were evaluated in augmented block design. Data were recorded on different biochemical attributes. Adjusted mean values indicated that CP 3145 (10.15Brix) for total soluble solids, CP 1689 (36.89 mg/g) for total polyphenols, CP 1302 (28.68 mg/100 g) for ascorbic acid, CP 3891 (24.41 µg/g) for total carotenoids content, CP 1667 (0.21%,) for total sugars, CP 1667 (0.10%) for reducing sugars and CP 1884 (0.06%) for non-reducing sugars were the top ranked genotypes. High PCV and GCV were observed for total polyphenols and total carotenoids content. High heritability coupled with high genetic advance was recorded for total polyphenols, ascorbic acid content, starch content, total carotenoids content and reducing sugars. Principal component analysis indicated the three most informative principal components with more than one eigen value, accounting for 57.40% of the total variance for all traits.

Downloads

Download data is not yet available.

References

Andre C M, Ghislain M, Bertin P, Oufir M, Herrera M D R, Hoffmann L, Hausman J F, Larondelle Y and Evers D. 2017. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55(2): 366–78. DOI: https://doi.org/10.1021/jf062740i

Brar A, Bhatia A K, Pandey V and Kumari P. 2017. Biochemical and phytochemical properties of potato: A review. Chemical Science Review and Letters 6(21): 117–29.

Burton G M and De Vane E H. 1953. Estimating heritability in tall Fescue (Festuca arundinacea) from replicated colonal material. Agronomy Journal 45: 310–14. DOI: https://doi.org/10.2134/agronj1953.00021962004500100005x

Choi I, Chun J, Choi H S, Park J, Kim N G, Lee S K, Park C H, Jeong K H, Nam J W, Cho J and Cho K. 2020. Starch characteristics, sugars and thermal properties of processing potato (Solanum tuberosum L.) cultivars developed in Korea. American Journal of Potato Research 97: 308–17. DOI: https://doi.org/10.1007/s12230-020-09779-z

Dalamu, Singh B, Shivali B, Pinky R, Reena S and Alka J. 2015. Assesment of phytochemical diversity in Indian potato cultivars. Indian Journal of Horticulture 72(3): 447–50. DOI: https://doi.org/10.5958/0974-0112.2015.00090.0

Das B, Sarkar K K, Priya B, Dudhane A S, Pradhan A M and Das A. 2014. Evaluation of early and late harvested potatoes for yield, quality and storability. International Journal of Bio- resource and Stress Management 5(1): 22–30. DOI: https://doi.org/10.5958/j.0976-4038.5.1.004

Datta S, Das R and Singh D. 2015. Evaluation of genetic diversity for yield and quality parameters of different potato (Solanum tuberosum L.) germplasm. Journal of Applied and Natural Science 7(1): 235–41. DOI: https://doi.org/10.31018/jans.v7i1.596

DuBois M, Gilles K A, Hamilton J K, Rebers P A and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350–56. DOI: https://doi.org/10.1021/ac60111a017

Grommers H E and Van der Krogt D A. 2009. Potato starch: Production, modifications and uses. Food Science and Technology 511–39. DOI: https://doi.org/10.1016/B978-0-12-746275-2.00011-2

Johnson H W, Robinson H F and Comstock R E. 1955. Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47: 310–14. DOI: https://doi.org/10.2134/agronj1955.00021962004700070009x

Kaur S and Aggarwal P. 2014. Evaluation of antioxidant phytochemicals in different genotypes of potato. International Journal of Engineering Research and Applications 4(7): 167–72.

Mahdavi R, Nikniaz Z, Rafraf M and Jouyban A. 2010. Determination and comparison of total polyphenol and vitamin C contents of natural fresh and commercial fruit juices. Pakistan Journal of Nutrition 9(10): 968–72. DOI: https://doi.org/10.3923/pjn.2010.968.972

Makkar H P S. 2003. Quantification of Tannins in Tree and Shrub Foliage, pp. 102–07. Makkar H P S (Ed). A Laboratory Manual, Kluwer Academic Publishers, Dordrecht, The Netherlands. DOI: https://doi.org/10.1007/978-94-017-0273-7

Marwaha R S, Pandey S K, Kumar D, Singh S V and Kumar P. 2010. Potato processing scenario in India: Industrial constraints, future projections, challenges ahead and remedies: A review. Journal of Food Science and Technology 47: 137–56. DOI: https://doi.org/10.1007/s13197-010-0026-0

Miller G L. 1972. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 31: 426–28. DOI: https://doi.org/10.1021/ac60147a030

Mostofa M, Roy T S, Chakraborty R, Ferdous J, Nowroz F and Noor R. 2019. Effect of vermicompost and tuber size on total soluble solids, sucrose and skin color of potato under ambient storage condition. Azarian Journal of Agriculture 6(3): 58–66. DOI: https://doi.org/10.29252/azarinj.008

Pardo J E, Alvarruiz A, Perez J I, Gomez R and Varon R. 2000. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). Journal of Food Quality 23: 149–60. DOI: https://doi.org/10.1111/j.1745-4557.2000.tb00202.x

Pradhan A M, Sarkar K K and Konar A. 2015. Genetic divergence in some Indian potato genotypes. Environment and Ecology 33(3A): 1225–27.

Ranganna S. 1979. Manual of Analysis of Fruits and Vegetables Products. Tata Mc Graw Hill Book Company, New Delhi, India. Sattar M A, Uddin M Z, Islam M R, Bhuiyan M K R and Rahman M

S. 2011. Genetic divergence in potato (Solanum tuberosum L.). Bangladesh Journal of Agricultural Research 36(1): 165–72. DOI: https://doi.org/10.3329/bjar.v36i1.9240

Seid E, Tessema L, Abebe T, Solomon A, Chindi A, Hirut B, Negash K, Shunka E, Mogse Z, Burgos G and Mendes T. 2023. Genetic variability for micronutrient content and tuber yield traits among biofortified potato (Solanum tuberosum L.) clones in Ethiopia. Plants 12(14): 2625. DOI: https://doi.org/10.3390/plants12142625

Sekhon B S and Sharma A. 2019. Genetic studies based on selected morpho-physiological parameters in garden pea (Pisum sativum L.). Indian Journal of Plant Genetic Resources 32(1): 59–65. DOI: https://doi.org/10.5958/0976-1926.2019.00008.1

Sharma J R. 1998. Statistical and Biometrical Techniques in Plant Breeding, pp. 432. New Age International, New Delhi, India. Singh B, Goutam U, Kukreja S, Sharma J, Sood S and Bhardwaj V. 2021. Potato biofortification: An effective way to fight global hidden hunger. Physiology and Molecular Biology of Plants 27(10): 2297–313. DOI: https://doi.org/10.1007/s12298-021-01081-4

Singh J, Kumar D, Sood S, Bhardwaj V, Kumar R and Kumar S. 2024. Genetic variability and association studies for yield and its attributes in cultivated potato (Solanum tuberosum L.). Vegetable Science 51(1): 148–53. DOI: https://doi.org/10.61180/vegsci.2024.v51.i1.20

Tessema G L, Mohammed A W and Abebe D T. 2022. Genetic variability studies for tuber yield and yield attributes in Ethiopian released potato (Solanum tuberosum L.) varieties. PeerJ 10: e12860. DOI: https://doi.org/10.7717/peerj.12860

Thomas P and Joshi M R. 1997. Total carotenoids content. Potato Research 20: 78.

Unche P B, Misal M B, Borgaonkar S B, Godhawale G V, Chavan B D and Sawant D R. 2008. Genetic variability studies in sweet sorghum (Sorghum bicolor L. Moench). International Journal of Plant Sciences 3: 16–18.

Ward J H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301): 236–44. DOI: https://doi.org/10.1080/01621459.1963.10500845

Zeleke A A, Abebe T D and Getahun B B. 2021. Estimation of genetic variability, heritability and genetic advance in potato (Solanum tuberosum L.) genotypes for tuber yield and yield related traits. Turkish Journal of Agriculture-Food Science and Technology 9(12): 2124–30. DOI: https://doi.org/10.24925/turjaf.v9i12.2124-2130.4301

Submitted

2023-08-16

Published

2024-10-11

Issue

Section

Articles

How to Cite

SINGH, J. ., KUMAR, D. ., BHARDWAJ, V. ., SOOD, S. ., & DAROCH, R. K. . (2024). Biochemical profiling of tetraploid potato (Solanum tuberosum) genotypes. The Indian Journal of Agricultural Sciences, 94(10), 1069–1074. https://doi.org/10.56093/ijas.v94i10.140910
Citation