Determination of insecticide resistance in cotton whitefly in north India


362 / 451

Authors

  • RAJNA S ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India image/svg+xml
  • G K MAHAPATRO ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India image/svg+xml
  • S SUBRAMANIAN ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India image/svg+xml
  • SUBASH CHANDER ICAR-National Centre for Integrated Pest Management, New Delhi image/svg+xml

https://doi.org/10.56093/ijas.v94i4.143044

Keywords:

Asia II 1, Bemisia tabaci, Detoxifying enzymes, Genetic group, Insecticide resistance, LC50

Abstract

The whitefly, Bemisia tabaci (Gennadius) considered as most destructive pest, poses a significant threat to various crop species globally has developed resistance due to the indiscriminate use of synthetic chemicals. A study was carried out in 2018 at ICAR-Indian Agricultural Research Institute, New Delhi to determine insecticide resistance, in five Asia II 1 populations of B. tabaci from different cotton (Gossypium hirsutum L.) growing regions of north India. The susceptibility of the populations to different insecticide classes, viz. synthetic pyrethroid (cypermethrin); neonicotinoids (imidacloprid and thiamethoxam); thiourea (diafenthiuron) and diamide (cyantraniliprole) were assessed. Results revealed substantial heterogeneity in the responses of these populations to the insecticides. Sriganganagar and Bathinda populations exhibited moderate resistance to cypermethrin, imidacloprid, and thiamethoxam. Low level of resistance was observed in Bathinda and Sriganganagar populations against diafenthiuron. All populations were highly susceptible to cyantraniliprole. No cross-resistance was observed between cyantraniliprole and other insecticides, suggesting its potential as an alternative for managing insecticide resistance. High levels of detoxification enzymes (esterase, cytochrome P450 monooxygenase, and glutathione-S-transferase) in Sriganganagar and Bathinda populations indicated a positive correlation between insecticide resistance and detoxifying enzymes. These findings offer valuable insight for implementing insecticide rotation strategies to combat B. tabaci resistance in India.

Downloads

Download data is not yet available.

References

Barman M, Samanta S, Upadhyaya G, Thakur H, Chakraborty S, Samanta A and Tarafdar J. 2022. Unraveling the basis of neonicotinoid resistance in whitefly species complex: Role of endosymbiotic bacteria and insecticide resistance genes. Frontiers in Microbiology 13: 901793. DOI: https://doi.org/10.3389/fmicb.2022.901793

Basij M, Talebi K, Ghadamyari M, Hosseininaveh V and Salami S A. 2017. Status of resistance of Bemisia tabaci (Hemiptera:Aleyrodidae) to neonicotinoids in Iran and detoxification by cytochrome P450-dependent monooxygenases. Neotropical Entomology 46(1): 115–24. DOI: https://doi.org/10.1007/s13744-016-0437-3

Basit M. 2019. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47(2): 207–25. DOI: https://doi.org/10.1007/s12600-019-00722-5

Boykin L M, Savill A and De Barro P. 2017. Updated mtCOI reference dataset for the Bemisia tabaci species complex. F1000 Research 6: 1835. https://doi.org/10.12688/f1000research. 12858.1 DOI: https://doi.org/10.12688/f1000research.12858.1

Caballero R, Cyman S and Schuster D J. 2013. Baseline susceptibility of Bemisia tabaci, biotype B (Hemiptera:Aleyrodidae) to chlorantraniliprole in southern Florida. Florida Entomologist 96(3): 1002–008. DOI: https://doi.org/10.1653/024.096.0338

Chen J C, Wang Z H, Cao L J, Gong Y J, Hoffmann A A and Wei S J. 2018. Toxicity of seven insecticides to different developmental stages of the whitefly Bemisia tabaci MED (Hemiptera:Aleyrodidae) in multiple field populations of China. Ecotoxicology 27(6): 742–51. DOI: https://doi.org/10.1007/s10646-018-1956-y

Dangelo R A C, Michereff-Filho M, Campos M R, Da Silva P S and Guedes R N C. 2018. Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): A neotropical scenario. Annals of Applied Biology 172(1): 88–99. DOI: https://doi.org/10.1111/aab.12404

El-Zahi E Z S, El-Sarand E S A and El Masry G N. 2017. Activity of flonicamid and two neonicotinoid insecticides against Bemisia tabaci (Gennadius) and its associated predators on cotton plants. Egyptian Academic Journal of Biological Sciences: A, Entomology 10(8): 25–34. DOI: https://doi.org/10.21608/eajb.2017.11990

Gravalos C, Fernandez E, Belando A, Moreno I, Ros C and Bielza P. 2015. Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Management Science 71(7): 1030–036. DOI: https://doi.org/10.1002/ps.3885

Guo L, Xie W, Wang S, Wu Q, Li R, Yang N, Yang X, Pan H and Zhang Y. 2014. Detoxification enzymes of Bemisia tabaci B and Q: Biochemical characteristics and gene expression profiles. Pest Management Science 70(10): 1588–594. DOI: https://doi.org/10.1002/ps.3751

Horowitz A R, Ghanim M, Roditakis E, Nauen R and Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science 93(3): 893–910. DOI: https://doi.org/10.1007/s10340-020-01210-0

Liu F Y, Li H, Qiu J, Zhang Y, Huang L, Li H, Wang G and Shen J. 2010. Monitoring of resistance to several insecticides in brown planthopper (Nilaparvata lugens) in Huizhou. Chinese Bulletin of Entomology 47: 991–93.

Mota-Sanchez D and Wise J C. 2023. Arthropod pesticide resistance database. Michigan State University. http://www. pesticide resistance

Naveen N C, Chaubey R, Kumar D, Rebijith K B, Rajagopal R, Subrahmanyam B and Subramanian S. 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports 7(1): 1–15. DOI: https://doi.org/10.1038/srep40634

Penilla R P, Rodríguez A D, Hemingway J, Trejo A, Lopez A D and Rodríguez M H. 2007. Cytochrome P450-based resistance mechanism and pyrethroid resistance in the field Anopheles albimanus resistance management trial. Pesticide Biochemistry and Physiology 89(2): 111–17. DOI: https://doi.org/10.1016/j.pestbp.2007.03.004

Rehman M, Chakraborty P, Tanti B, Mandal B and Ghosh A. 2021. Occurrence of a new cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae): An updated record of cryptic diversity in India. Phytoparasitica 49: 869–82. DOI: https://doi.org/10.1007/s12600-021-00909-9

Robertson J L, Russell R M, Preisler H K and Savin N E. 2007. Bioassays with Arthropods, pp. 212. CRC Press. DOI: https://doi.org/10.1201/9781420004045

Wang F, Liu J, Chen P, Li H Y, Ma J J, Liu Y J and Wang K. 2020c. Bemisia tabaci (Hemiptera: Aleyrodidae) insecticide resistance in Shandong province, China. Journal of Economic Entomology 113(2): 911–17. DOI: https://doi.org/10.1093/jee/toz315

Wang R, Che W, Wang J, Qu C and Luo C. 2020a. Cross-resistance and biochemical mechanism of resistance to cyantraniliprole in a near-isogenic line of whitefly Bemisia tabaci Mediterranean (Q biotype). Pesticide Biochemistry and Physiology 167: 104590. DOI: https://doi.org/10.1016/j.pestbp.2020.104590

Wang R, Wang J D, Che W N, Yan S, Li W X and Chen L U O. 2020b. Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China. Journal of Integrative Agriculture 18(11): 2571–578. DOI: https://doi.org/10.1016/S2095-3119(19)62557-8

Wang Q, Luo C and Wang R. 2023. Insecticide resistance and its management in two invasive cryptic species of Bemisia tabaci in China. International Journal of Molecular Sciences 24(7): 6048. DOI: https://doi.org/10.3390/ijms24076048

Downloads

Submitted

2023-09-28

Published

2024-04-24

Issue

Section

Articles

How to Cite

S, R. ., MAHAPATRO, G. K. ., SUBRAMANIAN, S. ., & CHANDER, S. . (2024). Determination of insecticide resistance in cotton whitefly in north India. The Indian Journal of Agricultural Sciences, 94(4), 404–409. https://doi.org/10.56093/ijas.v94i4.143044
Citation