Selection of superior fodder maize (Zea mays) parental inbreds using multi trait genotype ideotype distance index (MGIDI) andmulti trait stability index (MTSI)


246 / 199 / 61

Authors

  • S PALANIYAPPAN Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml
  • K N GANESAN Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml
  • N MANIVANNAN Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml

https://doi.org/10.56093/ijas.v94i12.145489

Keywords:

Fodder maize, Inbreds, MGIDI, MTSI

Abstract

Fodder maize (Zea mays L.) is one of the highly nutritious and palatable forage crop among the cereal fodders. For identifying the superior parents for hybridization, breeders have to identify the best performing inbreds by evaluating different plant variables. However, selecting a genotype that excels across multiple traits is a complex and challenging task. The most widely used selection index method is Smith-Hazel model mainly based on phenotypic covariance matrices inversion. In this multi trait selection method, the presence of multicollinearity leads to inefficient estimates of selection gain. Therefore, the new genetic statistical selection indices like multi trait genotype ideotype distance index (MGIDI) and multi trait stability index (MTSI) were employed in the present experiment for selection of superior and stable performing genotypes among the 28 fodder maize inbreds. The MGIDI analysis in 28 fodder maize inbreds evaluated in three different seasons namely rainy (kharif) 2022, winter (rabi) 2022 and summer 2023, revealed that African Tall, TNFM 139-1 and GETM 25 identified as superior genotypes across the three different seasons consistently. Similarly, MTSI analysis pertaining to the stability of genotypes indicated genotypes, viz. UMI 1201, N-09-160-2, GETM 25, 52485, UMI 1210 and N 66 to be superior and stable. The identified superior fodder maize inbreds could be used in breeding programme to develop heterotic single cross fodder maize hybrids.

Downloads

Download data is not yet available.

References

Al-Ashkar I, Sallam M, Almutairi K F, Shady M, Ibrahim A and Alghamdi S S. 2023. Detection of high-performance wheat genotypes and genetic stability to determine complex interplay between genotypes and environments. Agronomy 13(2): 585. Azrai M, Aqil M, Efendi R, Andayani N N, Makkulawu A T, Iriany R N, Suarni, Yasin M, Suwardi, Zainuddin B, Salim, Sitaresmi T, Bahtiar Paesal and Suwarno W B. 2023. A comparative study on single and multiple trait selections of equatorial grown maize hybrids. Frontiers in Sustainable Food

Systems 7: 1185102.

Borkhatariya T H, Gohil D P, Sondarava P M, Patel R and Akbari K M. 2022. Character association and path coefficient analysis among diverse genotypes of forage maize (Zea mays L.). Biological Forum–An International Journal 14(3): 829–33.

Ceron-Rojas J J and Crossa J. 2018. Linear Selection Indices in Modern Plant Breeding, pp. 256. Springer Nature. DOI: https://doi.org/10.1007/978-3-319-91223-3

Choudhary M, Singh A, Gupta M and Rakshit S. 2020. Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining 14(2): 402–16. DOI: https://doi.org/10.1002/bbb.2060

Gauch H G. 2013. A simple protocol for AMMI analysis of yield trials. Crop Science 53(5): 1860–69. DOI: https://doi.org/10.2135/cropsci2013.04.0241

Hazel L N. 1943. The genetic basis for constructing selection indexes. Genetics 28: 476–90. DOI: https://doi.org/10.1093/genetics/28.6.476

Hussain T, Akram Z, Shabbir G, Manaf A and Ahmed M. 2021. Identification of drought tolerant Chickpea genotypes through multi trait stability index. Saudi Journal of Biological Sciences 28(12): 6818–28. DOI: https://doi.org/10.1016/j.sjbs.2021.07.056

Kumar B, Choudhary M, Kumar P, Kumar S, Sravani D, Vinodhana N K and Rakshit S. 2024. GGE biplot analysis and selection indices for yield and stability assessment of maize (Zea mays L.) genotypes under drought and irrigated conditions. Indian Journal of Genetics and Plant Breeding 84(2): 209–15. DOI: https://doi.org/10.31742/ISGPB.84.2.8

Lee S Y, Lee H S, Lee C M, Ha S K, Park H M, Lee S M, Jeung Y K J and Mo Y. 2023. Multi-environment trials and stability analysis for yield-related traits of commercial rice cultivars. Agriculture 13(2): 256. DOI: https://doi.org/10.3390/agriculture13020256

Memon J, Patel R, Parmar D J, Kumar S, Patel N A, Patel B N, Patel D A and Katba P. 2023. Deployment of AMMI, GGE- biplot and MTSI to select elite genotypes of castor (Ricinus communis L.). Heliyon 9(2). DOI: https://doi.org/10.1016/j.heliyon.2023.e13515

Olivoto T, Lucio, A D, Silva J A, Marchioro V S, Souza V Q and Jost E. 2019a. Mean performance and stability in multi- environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal 111: 2949–60. DOI: https://doi.org/10.2134/agronj2019.03.0220

Olivoto T, Lucio A D, Da Silva J A, Sari B G and Diel M I. 2019b. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal 111(6): 2961–69. DOI: https://doi.org/10.2134/agronj2019.03.0221

Olivoto T and Nardino M. 2020a. MGIDI: A novel multi-trait index for genotype selection in plant breeding. BioRxiv2020–07.

Olivoto T and Lucio A D C. 2020b. Metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution 11(6): 783–89. DOI: https://doi.org/10.1111/2041-210X.13384

Olivoto T and Nardino M. 2021a. MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics 37(10): 1383–89. DOI: https://doi.org/10.1093/bioinformatics/btaa981

Olivoto T, Diel M I, Schmidt D and Lucio A D. 2021b. Multivariate analysis of strawberry experiments: Where are we now and where can we go? BioRxiv 2020–12. 2030.424876 DOI: https://doi.org/10.1101/2020.12.30.424876

Sellami M H, Pulvento C and Lavini A. 2021. Selection of suitable genotypes of lentil (Lens culinaris Medik.) under rainfed conditions in South Italy using multi-trait stability index (MTSI). Agronomy 11(9): 1807. DOI: https://doi.org/10.3390/agronomy11091807

Smith H. 1936. A discriminant function for plant selection. Annals of Eugenics 7: 240–50. DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02143.x

Tahir A and Habib N. 2013. Forecasting of maize area and production in Pakistan. Crop Production 2(2): 44–48.

Uddin M S, Azam M G, Billah M, Bagum S A, Biswas P L, Khaldun A B M, Hossain N, Gaber A, Althobaiti Y S and Abdelhadi A A. 2021. High-throughput root network system analysis for low phosphorus tolerance in maize at seedling stage. Agronomy 11(11): 2230. DOI: https://doi.org/10.3390/agronomy11112230

Zuffo A M, Steiner F, Aguilera J G, Teodoro P E, Teodoro L P R and Busch A. 2020. Multi-trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science 206(6): 815–22. DOI: https://doi.org/10.1111/jac.12409

Submitted

2023-11-21

Published

2025-02-04

Issue

Section

Articles

How to Cite

PALANIYAPPAN, S. ., GANESAN, K. N. ., & MANIVANNAN, N. . (2025). Selection of superior fodder maize (Zea mays) parental inbreds using multi trait genotype ideotype distance index (MGIDI) andmulti trait stability index (MTSI). The Indian Journal of Agricultural Sciences, 95(1), 16–21. https://doi.org/10.56093/ijas.v94i12.145489
Citation