Sheath blight resistance in rice (Oryza sativa): A comprehensive review


398 / 146

Authors

  • SAHASRANTIKA GHOSH Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml
  • SATYA V K Horticultural College and Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu
  • GOPALAKRISHNAN C Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml
  • JEYAPRAKASH P Anbil Dharmalingam Agricultural College and Research Institute (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Tiruchirappalli, Tamil Nadu
  • VARANAVASIYAPPAN S Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India image/svg+xml
  • BISHNU MAYA BASHYAL ICAR-Indian Agricultural Research Institute, New Delhi image/svg+xml
  • AMAL GHOSH ICAR-Indian Agricultural Research Institute, New Delhi image/svg+xml

https://doi.org/10.56093/ijas.v95i2.162339

Keywords:

Disease resistance, GWAS, Management, QTL, Rhizoctonia, Rice, Sheath blight

Abstract

The growing global population and the rising trend of rice consumption are expected to drive up future rice (Oryza sativa L.) demand. If India, China, and Indonesia's recent pattern of rising per capita consumption of rice continues, the overall increase in rice consumption might possibly outpace the population rise. The reduction of cultivable area and the yearly crop loss valued at billions of dollars as a result of sheath blight disease and changing climate aggravate the issue. The pathogen's extremely wide host range, great genetic variability, and the lack of any discernible natural resistance in the existing rice germplasm make it difficult to control. It is imperative to discover countermeasures against the disease in order to minimize the threat to global food security and reduce losses in rice yield. In this review, details on the sheath blight symptoms, pathogen character, disease cycle, host range, QTLs, genome wide association study (GWAS), genomic selection approach, key genes related to sheath blight resistance are summarized.

Downloads

Download data is not yet available.

References

Baisakh N, Datta K, Oliva N, Ona I, Rao and Mew T. 2001. Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnology 18(2): 101–08. DOI: https://doi.org/10.5511/plantbiotechnology.18.101

Bal A, Samal P, Chakraborti M, Mukherjee A K, Ray S, Molla K A, Behera L, Samal R, Sarangi S, Sahoo P, Behera M, Lenka S, Azharudheen T P M, Khandual A and Kar M K. 2020. Stable quantitative trait locus (QTL) for sheath blight resistance from rice cultivar CR 1014. Euphytica 216: 1–9. DOI: https://doi.org/10.1007/s10681-020-02702-x

Bashyal B M, Pandey S, Singh A R, Prashantha S T, Gopalakrishnan S, Singh D, Kamil D and Aggarwal R. 2022. Utilization of fungal biocontrol agents against rice sheath blight disease provides insight into their role in plant defence responses. Indian Journal of Biochemistry and Biophysics 59: 1069–80.

Bashyal B M, Rawat K, Singh D, Krishnan S G, Singh A K, Singh N K and Aggarwal R. 2017. Screening and identification of new sources of resistance to sheath blight in wild rice accessions. Indian Journal of Genetics and Plant Breeding 77(3): 341–47. DOI: https://doi.org/10.5958/0975-6906.2017.00046.3

Bhandari A, Sandhu N, Bartholome J, Cao-Hamadoun T V, Ahmadi N, Kumari N and Kumar A. 2020. Genome-wide association study for yield and yield related traits under reproductive stage drought in a diverse Indica-aus rice panel. Rice 13: 1–22. DOI: https://doi.org/10.1186/s12284-020-00406-3

Brooks S A. 2007. Sensitivity to a phytotoxin from Rhizoctonia solani correlates with sheath blight susceptibility in rice. Phytopathology 97: 1207–12. DOI: https://doi.org/10.1094/PHYTO-97-10-1207

Cao W, Zhang H, Zhou Y, Zhao J, Lu S, Wang X, Chen X, Yuan L, Guan H, Wang G and Shen W. 2022. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. Plant Biotechnology Journal 20(2): 335–49. DOI: https://doi.org/10.1111/pbi.13715

Carling D E, Kuninaga S and Brainard K A. 2002a. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92(1): 43–50. DOI: https://doi.org/10.1094/PHYTO.2002.92.1.43

Carling D E, Leiner R H and Kebler K M. 1987. Characterization of a new anastomosis group (AG-9) of Rhizoctonia solani. Phytopathology 77: 1609–12. DOI: https://doi.org/10.1094/Phyto-77-1609

Carling D E, Pope E J, Brainard K A and Carter D A. 1999. Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 89(10): 942–46. DOI: https://doi.org/10.1094/PHYTO.1999.89.10.942

Carling D E, Rothrock C S, MacNish G C, Sweetingham M W, Brainard K A and Winters S W. 1994. Characterization of anastomosis group 11 (AG-11) of Rhizoctonia solani. Phytopathology 84(12): 1387–93. DOI: https://doi.org/10.1094/Phyto-84-1387

Carling D, Baird R, Gitaitis R, Brainard K and Kuninaga S. 2002b. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 92(8): 893–99 DOI: https://doi.org/10.1094/PHYTO.2002.92.8.893

Channamallikarjuna V, Sonah H, Prasad M, Rao G J N, Chand S, Upreti H C, Singh N K and Sharma T R. 2010. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Molecular Breeding 25: 155–66. DOI: https://doi.org/10.1007/s11032-009-9316-5

Chen J, Xuan Y, Yi J, Xiao G, Yuan P and Li D. 2023. Progress in rice sheath blight resistance research. Frontiers in Plant Science 14: 1141697. DOI: https://doi.org/10.3389/fpls.2023.1141697

Chen X, Chen Y, Zhang L, He Z, Huang B, Chen C, Zhang Q and Zuo S. 2019a. Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. Rice 12: 1–2. DOI: https://doi.org/10.1186/s12284-019-0318-6

Chen Z, Feng Z, Kang H, Zhao J, Chen T, Li Q, Gong H, Zhang Y, Chen X, Pan X, Liu W, Wang G and Zuo S. 2019b. Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Science 26(1): 21–31. DOI: https://doi.org/10.1016/j.rsci.2018.12.002

Chu J, Xu H, Dong H and Xuan Y H. 2021. Loose plant architecture 1- interacting kinesin-like protein KLP promotes rice resistance to sheath blight disease. Rice 14: 60. DOI: https://doi.org/10.1186/s12284-021-00505-9

Cui D, Li Y, Fan Q, Sui X, Huang C and Chu X. 2019. Construction of wheat genetic linkage map based on 90K SNP array and mapping QTLs for sharp eyespot resistance. Shandong Agricultural Sciences 51(2): 13–17.

Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew T W, Muthukrishnan S and Datta S K. 2001. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Science 160(3): 405–14. DOI: https://doi.org/10.1016/S0168-9452(00)00413-1

Datta K, Velazhahan R, Oliva N, Ona I, Mew, T, Khush G S, Muthukrishnan S and Datta S K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and Applied Genetics 98: 1138–45. DOI: https://doi.org/10.1007/s001220051178

Eizenga G C, Jia M H, Pinson S R, Gasore E R and Prasad B. 2015. Exploring sheath blight quantitative trait loci in a Lemont/O. meridionalis advanced backcross population. Molecular Breeding 35: 1–19. DOI: https://doi.org/10.1007/s11032-015-0332-3

Eizenga G C, Prasad B, Jackson A K and Jia M H. 2013. Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Molecular Breeding 31: 889–907. DOI: https://doi.org/10.1007/s11032-013-9843-y

Fu D, Chen L, Yu G, Liu Y, Lou Q, Mei H, Xiong L, Li M, Xu X and Luo L. 2011. QTL mapping of sheath blight resistance in a deep-water rice cultivar. Euphytica 180: 209–18. DOI: https://doi.org/10.1007/s10681-011-0366-5

Fu D, Zhong K, Zhong Z, Hu G, Zhang P and Tong H. 2022. Genome-wide association study of sheath blight resistance within a core collection of rice (Oryza sativa L.). Agronomy 12(7): 1493. DOI: https://doi.org/10.3390/agronomy12071493

Gao Y, Xue C Y, Liu J M, He Y, Mei Q, Wei S and Xuan Y H. 2021. Sheath blight resistance in rice is negatively regulated by WRKY53 via SWEET2a activation. Biochemical and Biophysical Research Communications 585: 117–23. DOI: https://doi.org/10.1016/j.bbrc.2021.11.042

Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B and Xuan Y H. 2018. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to Sheath blight disease. Molecular Plant Pathology 19(9): 2149–61. DOI: https://doi.org/10.1111/mpp.12689

Goad D M, Jia Y, Gibbons A, Liu Y, Gealy D, Caicedo A L and Olsen K M. 2020. Identification of novel QTL conferring sheath blight resistance in two weedy rice mapping populations. Rice 13(1): 21. DOI: https://doi.org/10.1186/s12284-020-00381-9

Guleria S, Aggarwal R, Thind T S and Sharma T R. 2007. Morphological and pathological variability in rice isolates of Rhizoctonia solani and molecular analysis of their genetic variability. Journal of Phytopathology 155: 641–53. DOI: https://doi.org/10.1111/j.1439-0434.2007.01291.x

Han Y P, Xing Y Z, Gu S L, Chen Z X, Pan X B and Chen X L. 2003. Effect of morphological traits on sheath blight resistance in rice. Acta Botanica Boreali-Occidentalia Sinica 45: 825–31.

Helliwell E E, Wang Q and Yang Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnology Journal 11(1): 33–42. DOI: https://doi.org/10.1111/pbi.12004

Hollier C A, Rush M C and Groth D E. 2009. Sheath blight of rice Thanetophorus cucumeris (AB Frank) Donk Rhizoctonia solani Kuhn. Louisiana Plant Pathology Disease Identification and Management Series Publication 3123.

Homma Y, Ohbi Y and Katsube T. 1983. Suppresive factors to Japanese radish damping-off in the soil reinoculated with Rhizoctonia solani. Annals of the Phytopathological Society of Japan 49: 388.

Huang C Y, Wang H, Hu P, Hamby R and Jin H L. 2019. Small RNAs-big players in plant-microbe interactions. Cell Host Microbe 26: 173–82. DOI: https://doi.org/10.1016/j.chom.2019.07.021

Jha S, Tank H G, Prasad B D and Chattoo B B. 2009. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Research 18: 59–69. DOI: https://doi.org/10.1007/s11248-008-9196-1

Jia L, Yan W, Zhu C, Agrama H A, Jackson A, Yeater K, Li X, Huang B, Hu B, McClung A and Wu D. 2012. Allelic analysis of sheath blight resistance with association mapping in rice. PLOS One 7(3): e32703. DOI: https://doi.org/10.1371/journal.pone.0032703

Johnk J S, Jones R K, Shew H D and Carling D E. 1993. Characterization of populations of Rhizoctonia solani AG-3 from potato and tobacco. Phytopathology 83(8): 854–58. DOI: https://doi.org/10.1094/Phyto-83-854

Johnk J S and Jones R K. 2001. Differentiation of three homogeneous groups of Rhizoctonia solani Anastomosis Group 4 by analysis of fatty acids. Phytopathology 91(9): 821–30. doi: 10.1094/PHYTO.2001.91.9.821 DOI: https://doi.org/10.1094/PHYTO.2001.91.9.821

Karmakar S, Molla K A, Chanda P K, Sarkar S N, Datta S K and Datta K. 2016. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243: 115–30. DOI: https://doi.org/10.1007/s00425-015-2398-x

Khodayari M, Safaie N and Shamsbakhsh M. 2009. Genetic diversity of Iranian AG1-IA isolates of Rhizoctonia solani, the cause of rice sheath blight, using morphological and molecular markers. Journal of Phytopathology 157: 708–14. DOI: https://doi.org/10.1111/j.1439-0434.2009.01541.x

Kim P, Xue C Y, Song H D, Gao Y, Feng L, Li Y and Xuan Y H. 2021. Tissue-specific activation of DOF11 promotes rice resistance to sheath blight disease and increases grain weight via activation of SWEET14. Plant Biotechnology Journal 19(3): 409–11. DOI: https://doi.org/10.1111/pbi.13489

Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K and Zhu L H. 2002. QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta genetica Sinica 29(1): 50–55.

Kuninaga S and Yokosawa R. 1984. DNA base sequence homology in Rhizoctonia solani Kuhn V. genetic relatedness within AG-6. Japanese Journal of Phytopathology 50(3): 346–52. DOI: https://doi.org/10.3186/jjphytopath.50.346

Kuninaga S, Godoy-Lutz G and Yokosawa R. 2002. rDNA-ITS nucleotide sequences analysis of Thanatephorus cucumeris AG-1 associated with web blight on common beans in Central America and Caribbean. Japanese Journal of Phytopathology 68: 3–20.

Kuninaga S, Yokosawa R and Ogoshi A. 1978. Anastomosis grouping of Rhizoctonia solani Kuhn isolated from non- cultivated soils. Japanese Journal of Phytopathology 44(5): 591–98. DOI: https://doi.org/10.3186/jjphytopath.44.591

Li D, Zhang F, Pinson S R M, Edwards J D, Jackson A K, Xia X and Eizenga G C. 2022. Assessment of rice sheath blight resistance including associations with plant architecture, as revealed by genome-wide association studies. Rice 15(1): 31. DOI: https://doi.org/10.1186/s12284-022-00574-4

Li M Y, Wang J N, Wang G D, Feng Z M, Ye Y H, Jiang W, Zuo T, Zhang Y F, Chen X J, Pan X B, Ma Y Y, Chen Z X and Zuo S M. 2019. Improvement of japonica rice resistance to sheath blight disease by incorporating quantitative resistance genes qSB-11HJX and qSB-9TQ. Journal of Yangzhou University 40: 1–7.

Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J and Xiong L. 2017. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genetics 13(7): e1006889. DOI: https://doi.org/10.1371/journal.pgen.1006889

Li Z, Pinson S R M, Marchetti M A, Stansel J W and Park W D. 1995. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theoretical and Applied Genetics 91: 382–88. DOI: https://doi.org/10.1007/BF00220903

Lilly J J and Subramanian B. 2019. Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.). Plant Science 280: 269–82. DOI: https://doi.org/10.1016/j.plantsci.2018.12.017

Lin Q J, Chu J, Kumar V, Yuan D P, Li Z M, Mei Q and Xuan Y H. 2021. Protein phosphatase 2A catalytic subunit PP2A-1 enhances rice resistance to sheath blight disease. Frontiers in Genome Editing 3: 632136. DOI: https://doi.org/10.3389/fgeed.2021.632136

Liu G U, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A and Correll J C. 2009. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99(9): 1078–84. DOI: https://doi.org/10.1094/PHYTO-99-9-1078

Liu G, Jia Y, McClung A, Oard J, Lee F and Correll J. 2013. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease. Plant Disease 97(1): 113–17. DOI: https://doi.org/10.1094/PDIS-05-12-0466-RE

Liu X L, Li J C, Noman A and Lou Y G. 2019. Silencing OsMAPK20–5 has different effects on rice pests in the field. Plant Signaling and Behavior 14: e1640562. DOI: https://doi.org/10.1080/15592324.2019.1640562

Liu Y, Chen L, Fu D, Lou Q, Mei H, Xiong L, Li M, Xu X, Mei X and Luo L. 2014. Dissection of additive, epistatic effect and QTL × environment interaction of quantitative trait loci for sheath blight resistance in rice. Hereditas 151: 28–37. DOI: https://doi.org/10.1111/hrd2.00026

Loan L, Du P and Li Z. 2004. Molecular dissection of quantitative resistance of sheath blight in rice (Oryza sativa L.). Omonrice 12: 1–12.

MacNish G C and Sweetingham M W. 1993. Evidence that each Rhizoctonia bare patch is dominated by an individual zymogram group (ZG) of Rhizoctonia solani AG-8. Australian Journal of Agricultural Research 44(6): 1175–94. DOI: https://doi.org/10.1071/AR9931175

Mahantesh K G, Das S, Saraswathi R, Gopalakrishnan C and Gnanam R. 2022a. Study of association between morphological traits and QTLs governing sheath blight resistance in rice (Oryza sativa L.). Electronic Journal of Plant Breeding 13(2): 608–15. DOI: https://doi.org/10.37992/2022.1302.069

Mahantesh, Ganesamurthy K, Das S, Saraswathi R, Gopalakrishnan C and Gnanam R. 2022b. Evaluation of the efficiency of genomic selection approach for predicting sheath blight resistance in rice (Oryza sativa L.) using bayesian models. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 24(1): 90–97

Mahantesh, Ganesamurthy K, Das S, Saraswathi R, Gopalakrishnan C and Gnanam R. 2022c. Analysis of the efficiency of genomic selection models for predicting sheath blight resistance in rice (Oryza sativa L.). International Journal of Bio-resource and Stress Management 13(3): 268–75 DOI: https://doi.org/10.53550/AJMBES.2022.v24i01.017

Mao B, Liu X, Hu D and Li D. 2014. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World Journal of Microbiology and Biotechnology 30: 1229–38. DOI: https://doi.org/10.1007/s11274-013-1546-3

Maruthasalam S, Kalpana K, Kumar K K, Loganathan M, Poovannan K, Raja J A J and Balasubramanian P. 2007. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Reports 26: 791–804. DOI: https://doi.org/10.1007/s00299-006-0292-5

Molla K A, Karmakar S, Chanda P K, Ghosh S, Sarkar S N, Datta S K and Datta K. 2013. Rice oxalate oxidase gene driven by green tissue specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Molecular Plant Pathology 14(9): 910–22. DOI: https://doi.org/10.1111/mpp.12055

Molla K A, Karmakar S, Chanda P K, Sarkar S N, Datta S K and Datta K. 2016. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Science 250: 105–14. DOI: https://doi.org/10.1016/j.plantsci.2016.06.005

Molla K A, Karmakar S, Molla J, Bajaj P, Varshney R K, Datta S K and Datta K. 2020. Understanding sheath blight resistance in rice: The road behind and the road ahead. Plant Biotechnology Journal 18(4): 895–915. DOI: https://doi.org/10.1111/pbi.13312

Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R and Velazhahan R. 2005. Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: Implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiological Research 160: 291–98. DOI: https://doi.org/10.1016/j.micres.2005.02.002

Naveenkumar R, Anandan A, Prabhukarthikeyan S R, Mahender A, Sangeetha G, Vaish S S, Singh P K, Hussain W and Ali J. 2023. Dissecting genomic regions and underlying sheath blight resistance traits in rice (Oryza sativa L.) using a genome wide association study. Plant Direct 7(11): e540. DOI: https://doi.org/10.1002/pld3.540

Nelson J C, Jodari F, Roughton A I, McKenzie K M, McClung A M, Fjellstrom R G and Scheffler B E. 2012. QTL mapping for milling quality in elite western US rice germplasm. Crop Science 52(1): 242–52. DOI: https://doi.org/10.2135/cropsci2011.06.0324

Ogoshi A. 1972. Some characters of hyphal anastomosis groups in Rhizoctonia solani Kuhn. Annals of the Phytopathological Society of Japan 38: 123–29. DOI: https://doi.org/10.3186/jjphytopath.38.123

Oreiro E G, Grimares E K, Atienza-Grande G, Quibod I L, Roman-Reyna V and Oliva R. 2020. Genome-wide associations and transcriptional profiling reveal ROS regulation as one underlying mechanism of sheath blight resistance in rice. Molecular Plant-Microbe Interactions 33(2): 212–22. DOI: https://doi.org/10.1094/MPMI-05-19-0141-R

Panthapulakkal N S, Lung S C, Liao P, Lo C and Chye M L. 2020. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Scientific Reports 10: 14918. DOI: https://doi.org/10.1038/s41598-020-71851-9

Parween D and Sahu B B. 2022. An Arabidopsis nonhost resistance gene, IMPORTIN ALPHA 2 provides immunity against rice sheath blight pathogen, Rhizoctonia solani. Current Research in Microbial Sciences 3: 100109. DOI: https://doi.org/10.1016/j.crmicr.2022.100109

Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H and Guo Z. 2012. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236(5): 1485–98. DOI: https://doi.org/10.1007/s00425-012-1698-7

Peng X, Wang H, Jang JC, Xiao T, He H, Jiang D and Tang X. 2016. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani. Rice 9: 63. Peng Y D, Xu X F, Hong W J, Wang S T, Jia X T, Liu Y, Li S, Li Z M, Sun Q, Mei Q, Li S, Jung K H, Wei S H and Xuan DOI: https://doi.org/10.1186/s12284-016-0137-y

Y H. 2020. Transcriptome analysis of rice leaves in response to Rhizoctonia solani infection and reveals a novel regulatory mechanism. Plant Biotechnology Reports 14: 559–73. DOI: https://doi.org/10.1007/s11816-020-00630-9

Phukan U J, Jeena G S and Shukla R K. 2016. WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science 7: 760. DOI: https://doi.org/10.3389/fpls.2016.00760

Pinson S R, Capdevielle F M and Oard J H. 2005. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Science 45(2): 503–10. DOI: https://doi.org/10.2135/cropsci2005.0503

Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass N L, Judelson H S, Mezzetti B, Niu D and Jin H. 2021. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnology Journal 19(9): 1756–68. DOI: https://doi.org/10.1111/pbi.13589

Qiao L, Zheng L, Sheng C, Zhao H, Jin H and Niu D. 2020. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. The Plant Journal 102(5): 948–64. DOI: https://doi.org/10.1111/tpj.14677

Qi Z, Yu J, Shen L, Yu Z, Yu M, Du Y, Zhang R, Song T, Yin X, Zhou Y, Li H, Wei Q and Liu Y. 2017. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein bacisubin from Bacillus subtilis. Plant Science 265: 51–60. DOI: https://doi.org/10.1016/j.plantsci.2017.09.014

Rao T B, Chopperla R, Methre R, Punniakotti E, Venkatesh V, Sailaja B, Reddy M R, Yugander A, Laha G S, Madhav M S, Sundaram R M, Ladhalakshmi D, Balachandran S M and Mangrauthia S K. 2019. Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance. Plant Molecular Biology 100: 59–71. DOI: https://doi.org/10.1007/s11103-019-00843-9

Richa K, Tiwari I M, Devanna B N, Botella J R, Sharma V and Sharma T R. 2017. Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Frontiers in Plant Science 8: 254719. DOI: https://doi.org/10.3389/fpls.2017.00596

Richa K, Tiwari I M, Kumari M, Devanna B N, Sonah H, Kumari A, Nagar R, Sharma V, Botella J R and Sharma T R. 2016. Functional characterization of novel chitinase genes present in the sheath blight resistance QTL: qSBR11–1 in rice line tetep. Frontiers in Plant Science 7: 244. DOI: https://doi.org/10.3389/fpls.2016.00244

Sadumpati V, Kalambur M, Vudem D R, Kirti P B and Khareedu V R. 2013. Transgenic indica rice lines, expressing Brassica juncea nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens. Journal of Biotechnology 166(3): 114–21. DOI: https://doi.org/10.1016/j.jbiotec.2013.04.016

Satya V K, Gayathiri S, Bhaskaran R, Paranidharan V and Velazhahan R. 2007. Induction of systemic resistance to bacterial blight caused by Xanthomonas campestris pv. malvacearum in cotton by leaf extract from a medicinal plant zimmu (Allium sativum L. × Allium cepa L.). Archives of Phytopathology and Plant Protection 40(5): 309–22. DOI: https://doi.org/10.1080/03235400600586781

Savary S, Castilla N P, Elazegui F A, McLaren C G, Ynalvez M A and Teng P S. 1995. Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology 85(9): 959–65. DOI: https://doi.org/10.1094/Phyto-85-959

Senapati M, Tiwari A, Sharma N, Chandra P, Bashyal B M, Ellur R K, Bhowmick P K, Bollinedi H, Vinod K K, Singh A K and Krishnan S G. 2022. Rhizoctonia solani Kuhn Pathophysiology: Status and prospects of sheath blight disease management in rice. Frontiers in Plant Science 13: 881116. DOI: https://doi.org/10.3389/fpls.2022.881116

Shah J M, Singh R and Veluthambi K. 2013. Transgenic rice lines constitutively co-expressing tlp-D 34 and chi 11 display enhancement of sheath blight resistance. Biologia Plantarum 57: 351–58. DOI: https://doi.org/10.1007/s10535-012-0291-z

Sharma A, McClung A M, Pinson S R, Kepiro J L, Shank A R, Tabien R E and Fjellstrom R. 2009. Genetic mapping of sheath blight resistance QTLs within tropical japonica rice cultivars. Crop Science 49(1): 256–64. DOI: https://doi.org/10.2135/cropsci2008.03.0124

Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang C J, Kaku H, Inoue H and Takatsuji H. 2012. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Molecular Plant Pathology 13: 83–94. DOI: https://doi.org/10.1111/j.1364-3703.2011.00732.x

Shi W, Zhao S L, Liu K, Sun Y B, Ni Z B, Zhang G Y, Tang H S, Zhu J W, Wan B J, Sun H Q, Dai J Y, Sun M F, Yan G H, Wang A M and Zhu G Y. 2020. Comparison of leaf transcriptome in response to Rhizoctonia solani infection between resistant and susceptible rice cultivars. BMC Genomics 21: 245. doi:10.1186/ s12864-020-6645-6 DOI: https://doi.org/10.1186/s12864-020-6645-6

Singh P, Mazumdar P, Harikrishna J A and Babu S. 2019. Sheath blight of rice: A review and identifcation of priorities for future research. Planta 250(5): 1387–407. DOI: https://doi.org/10.1007/s00425-019-03246-8

Singh R, Sunder S and Kumar P. 2016. Sheath blight of rice: Current status and perspectives. Indian Phytopathology 69(4): 340–51.

Singh A, Chandra P, Bahadur A, Debnath P, Subbaiyan G K, Ellur R K, Siddappa T P, Hosahalli M A K, Yadav G K and Bashyal B M.

2024. Assessment of morpho-cultural, genetic and pathological diversity of Rhizoctonia solani isolates obtained from different host plants. Journal of Plant Pathology 106: 67–82. DOI: https://doi.org/10.1007/s42161-023-01515-w

Sivalingam P N, Vishwakarma S N and Singh U S. 2006. Role of seed-borne inoculum of Rhizoctonia solani in sheath blight of rice. Indian Phytopathology 59(4): 445.

Sripriya R, Parameswari C and Veluthambi K. 2017. Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap 24) and rice chitinase (chi 11) genes. In vitro Cellular and Developmental Biology-Plant 53: 12–21. DOI: https://doi.org/10.1007/s11627-017-9807-8

Sun Q, Li D D, Chu J, Yuan D P, Li S, Zhong L J, Han X and Xuan Y H. 2020. Indeterminate domain proteins regulate rice defense to sheath blight disease. Rice 13: 15. DOI: https://doi.org/10.1186/s12284-020-0371-1

Sun Q, Li T Y, Li D D, Wang Z Y, Li S, Li D P, Han X, Liu J M and Xuan Y H. 2019. Overexpression of loose plant architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnology Journal 17(5): 855–57. DOI: https://doi.org/10.1111/pbi.13072

Taguchi-Shiobara F, Ozaki H, Sato H, Maeda H, Kojima Y, Ebitani T and Yano M. 2013. Mapping and validation of QTLs for rice sheath blight resistance. Breeding Science 63(3): 301–08. DOI: https://doi.org/10.1270/jsbbs.63.301

Thind T S and Aggarwal R. 2008. Characterization and pathogenic relationships of Rhizoctonia solani isolates in a potato- rice system and their sensitivity to fungicides. Journal of Phytopathology 156(10): 615–21. DOI: https://doi.org/10.1111/j.1439-0434.2008.01421.x

Tiwari I M, Jesuraj A, Kamboj R, Devanna B N, Botella J R and Sharma T R. 2017. Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Scientific Reports 7(1): 7521. DOI: https://doi.org/10.1038/s41598-017-07749-w

Tiwari M, Srivastava S, Singh P C, Mishra A K and Chakrabarty D. 2020. Functional characterization of tau class glutathione- S-transferase in rice to provide tolerance against sheath blight disease. 3 Biotech 10(3): 84. DOI: https://doi.org/10.1007/s13205-020-2071-3

Wang A, Shu X, Jing X, Jiao C, Chen L, Zhang J, Ma L, Jiang Y, Yamamoto N, Li S, Deng Q, Wang S, Zhu J, Liang Y, Zou T, Liu H, Wang L, Huang Y, Li P and Zheng A. 2021. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome wide association study. Plant Biotechnology Journal 19: 1553–56. DOI: https://doi.org/10.1111/pbi.13569

Wang R, Lu L, Pan X, Hu Z, Ling F, Yan Y, Liu Y and Lin Y. 2015b. Functional analysis of OsPGIP1 in rice sheath blight resistance. Plant Molecular Biology 87: 181–91. DOI: https://doi.org/10.1007/s11103-014-0269-7

Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Li M, Wang L, Feng Y, Chai R, Chen M, Chang J, Li K, Yang G and He G. 2015a. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in Plant Science 6: 615. DOI: https://doi.org/10.3389/fpls.2015.00615

Xie W, Cao W, Lu S, Zhao J, Shi X, Yue X, Wang G, Feng Z, Hu K, Chen Z and Zuo S. 2023. Knockout of transcription factor OsERF65 enhances ROS scavenging ability and confers resistance to rice sheath blight. Molecular Plant Pathology 24(12): 1535–51 DOI: https://doi.org/10.1111/mpp.13391

Xu J L, Xue Q Z, Luo L J and Li Z K. 2002. Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chinese Journal of Rice Science 16: 6–10.

Xu Q, Yuan X, Yu H, Wang Y, Tang S and Wei X. 2011. Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breeding 130: 404–06. DOI: https://doi.org/10.1111/j.1439-0523.2010.01806.x

Xue X, Cao Z X, Zhang X T, Wang Y, Zhang Y F, Chen Z X, Pan X B and Zuo S M. 2016. Overexpression of OsOSM1 enhances resistance to rice sheath blight. Plant Disease 100: 1634–42. DOI: https://doi.org/10.1094/PDIS-11-15-1372-RE

Yadav S, Anuradha G, Kumar R R, Vemireddy L R, Sudhakar R, Donempudi K, Venkata D, Jabeen F, Narasimhan Y K, Marathi B and Siddiq E A. 2015. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). SpringerPlus 4: 1–12. DOI: https://doi.org/10.1186/s40064-015-0954-2

Yang Q, Yang L, Wang Y, Chen Y, Hu K, Yang W, Zuo S, Xu J, Kang Z, Xiao X and Li G. 2022b. A High-quality genome of Rhizoctonia solani, a devastating fungal pathogen with a wide host range. Molecular Plant-Microbe Interactions 35(10): 954–58. DOI: https://doi.org/10.1094/MPMI-06-22-0126-A

Yin Y, Zuo S, Wang H, Chen Z, Gu S, Zhang Y and Pan X. 2009. Evaluation of the effect of qSB-9Tq involved in quantitative resistance to rice sheath blight using near-isogenic lines. Canadian Journal of Plant Science 89(4): 731–37. DOI: https://doi.org/10.4141/CJPS08112

Yuan D P, Zhang C, Wang Z Y, Zhu X F and Xuan Y H. 2018. RAVL1 activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice. Phytopathology 108(9): 1104–13. DOI: https://doi.org/10.1094/PHYTO-03-18-0085-R

Zeng Y X, Ji Z J, Li X M and Yang C D. 2011. Advances in mapping loci conferring resistance to rice sheath blight and mining Rhizoctonia solani resistant resources. Rice Science 18: 56–66. DOI: https://doi.org/10.1016/S1672-6308(11)60008-5

Zhang C, Huang M, Sang X, Li P, Ling Y, Zhao F, Du D, Li Y, Yang Z and He G. 2019. Association between sheath blight resistance and chitinase activity in transgenic rice plants expressing McCHIT1 from bitter melon. Transgenic Research 28: 381–90 DOI: https://doi.org/10.1007/s11248-019-00158-x

Zhu G, Liang E, Lan X, Li Q, Qian J, Tao H, Zhang M, Xiao N, Zuo S, Chen J and Gao Y. 2019. ZmPGIP3 gene encodes a polygalacturonase-inhibiting protein that enhances resistance to sheath blight in rice. Phytopathology 109: 1732–40. DOI: https://doi.org/10.1094/PHYTO-01-19-0008-R

Zhu Y, Zuo S, Chen Z, Chen X, Li G, Zhang Y, Zhang G and Pan X. 2014. Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines. Plant Disease 98: 1112–21. DOI: https://doi.org/10.1094/PDIS-10-13-1095-RE

Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X and Zhu L H. 2000. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theoretical and Applied Genetics 101: 569–73. DOI: https://doi.org/10.1007/s001220051517

Zuo S, Yin Y, Pan C, Chen Z, Zhang Y, Gu S, Zhu L and Pan X. 2013. Fine mapping of qSB-11LE, the QTL that confers partial resistance to rice sheath blight. Theoretical and Applied Genetics 126(5): 1257–72. DOI: https://doi.org/10.1007/s00122-013-2051-7

Zuo S, Zhang L, Wang H, Yin Y, Zhang Y, Chen Z, Ma Y and Pan X. 2008. Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. Journal of Genetics and Genomics 35: 499–505. DOI: https://doi.org/10.1016/S1673-8527(08)60068-5

Zuo S, Zhang Y, Yin Y, Li G, Zhang G, Wang H, Chen Z and Pan X. 2014. Fine-mapping of qSB-9 TQ, a gene conferring major quantitative resistance to rice sheath blight. Molecular Breeding 34: 2191–203. DOI: https://doi.org/10.1007/s11032-014-0173-5

Downloads

Submitted

2024-12-12

Published

2025-02-17

Issue

Section

Review Article

How to Cite

GHOSH, S. ., V K, S. ., C, G. ., P, J. ., S, V. ., BASHYAL, B. M. ., & GHOSH, A. . (2025). Sheath blight resistance in rice (Oryza sativa): A comprehensive review. The Indian Journal of Agricultural Sciences, 95(2), 119–132. https://doi.org/10.56093/ijas.v95i2.162339
Citation