Influence of climate change on tri-trophic interaction in maize ecosystem


15

Authors

  • Lalbiakzuali Ph. D. scholar

https://doi.org/10.56093/ijas.v95i10.167408

Keywords:

Climate change, Maize, Natural enemies, Spodoptera frugiperda, Tri-trophic interaction

Abstract

Agriculture is one of the most vulnerable sectors to the anticipated climate change which impede the growth and developmental rates of crop plants till higher trophic levels. Such effects with a focus on parasitoids as natural antagonists of herbivores have been investigated in maize ecosystem which consists of maize, Spodoptera frugiperda (fall armyworm) and parasitoids, Trichogramma chilonis (egg parasitoid) and Goniozus nephantidis (larval parasitoid) was carried out under Open Top Chambers (OTCs) during 2022-23 at Centre for Agro-climatic Studies, MARS, UAS, Raichur, Karnataka, India. Results revealed that under elevated CO2 @ 550 ppm + raised temperature @ 33⁰C, the plant height, number of leaves, chlorophyll content were increased along with grain and fodder yield. An increased in carbon-based concentrations and decreased in foliar nitrogen levels of maize leaves, eventually resulted in increased damage so as to acquire the required nutrition to attain proper growth. This led to more larval weight (592.0 ± 1.64 mg) and prolonged larval duration (28.03 ± 0.05 days), while decreasing pupal weight (225.7 ± 6.37 mg), female fecundity (720/female) and overall larval fitness. At the tritrophic level when T. chilonis and G. nephantidis reared on fall armyworm eggs and larvae respectively obtained from different climate change treatments resulted  in reduced parasitism rate (63.16%), emergence rate (61.93%), and prolonged developmental duration (11 days). Similarly, G. nephantidis experienced reduced adult size (3.50 ± 0.02 mm) and emergence rate (66.07%) due to the compromised quality of their hosts as a result of climate change.

Downloads

Download data is not yet available.

References

Adati, T., Satoshi, N., Tamo, Mand Kawazu, K., 2004, Effect of temperature on development and survival of legume pod borer Maruca vitrata (Fabricius) (Lepidoptera: Pyralidae) reared on a semi synthetic diet. Applied Entomology and Zoology, 39(1): 139-145.

Adishesha, K., Janagoudar, B. S., Amaregouda, A., Shanawad, U. K. and Chandranaik, M., 2017, Morphological charaters of maize (Zea mays L.) genotypes to elevated carbon dioxide and temperature regimes. Indian Journal of Pure & Applied Biosciences, 5(5): 163-170.

Anonymous, 2021, Package of practice, University of Agricultural Sciences, Raichur (India). 53-55.

Berryman, A. A., 1996, What causes population cycles of forest Lepidoptera?. Trends in Ecology & Evolution, 11(1): 28-32.

Chen, F. J., Wu, G., Parajulee, M. N., Ge, F., 2007, Impact of elevated CO2 on the third trophic level: A predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Science and Technology, 17 (3): 313–324.

Chen, F., Ge, F. and Parajulee, M. N., 2005, Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environmental Entomology, 34(1): 37-46.

Chormule, A., Shejawal, N., Sharanabasappa, C. M., Asokan, R., Swamy, H. M. and Studies, Z., 2019, First report of the fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. Journal of Entomology and Zoology Studies, 7(1): 114-117.

Dyer, L. A., Richards, L. A., Short, S. A. and Dodson, C. D., 2013, Effects of CO2 and temperature on tritrophic interactions. PloS One, 8(4): 62528.

Gray, S.B. and Brady, S.M., 2016. Plant developmental responses to climate change. Developmental biology, 419(1), pp.64-77.

Guyer, A., van Doan, C., Maurer, C., Machado, R.A., Mateo, P., Steinauer, K., Kesner, L., Hoch, G., Kahmen, A., Erb, M. and Robert, C.A., 2021. Climate change modulates multitrophic interactions between maize, a root herbivore, and its enemies. Journal of Chemical Ecology, 47(10), pp.889-906.

Holton, M. K., Lindroth, R. L. and Nordheim, E. V., 2003, Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia, 137: 233-244.

Intergovernmental Panel on Climate Change (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability: 12th Session of Working Group II and 55th Session of the IPCC. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/

Klaiber, J., Najar-Rodriguez, A. J., Dialer, E. and Dorn, S., 2013, Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 66 (1): 49-55.

Liu, J., Haung, W., Chi, H., Wang, C., Hua, H. and Wu, G., 2017, Effects of elevated CO2 on the fitness and potential damage of Helicoverpa armigera based on two-sex life table. Scientific Reports, 7: 1119.

Megha, 2020, Effect of climate change on growth and development of cowpea pod borer, Maruca vitrata (Fabricius) and Aphid, Aphis craccivora (Koch) mediated by Cowpea. M. Sc. Thesis. University of Agricultural Sciences, Raichur (India).

Miri, H. R., Rastegar, A. and Bagheri, A. R., 2012, The impact of elevated CO2 on growth and competitiveness of C3 and C4 crops and weeds. European Journal of Experimental Biology, 2(4): 1144-1150.

Montezano, D. G., Sosa-Gómez, D. R., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. D., Peterson, J. A. and Hunt, T. E., 2018, Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2): 286-300.

Mounica, D., Krishnayya, P. V. and Patibanda, A. K., 2020, Interactive effect of elevated CO2 and temperature on the biochemical constituents of maize, Zea mays (L.) and its impact on the fecundity of maize aphid, Rhopalosiphum maidis (F.). Journal of Pharmacognosy and Phytochemistry, 9(6): 1005-1010.

Moya, T. B., Ziska, L. H., Namuco, O. S. and Olszyk, D., 1998, Growth dynamics and genotypic variation in tropical, field‐grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biology, 4(6): 645-656.

Pooja, D., 2022, Effect of climate change on fall armyworm, Spodoptera frugiperda (J. E. Smith) mediated by Maize. M. Sc. Thesis. University of Agricultural Sciences, Raichur (India).

Reich, P.B., Hungate, B.A. and Luo, Y., 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37(1), pp.611-636.

Robinson, E.A., Ryan, G.D. and Newman, J.A., 2012. A meta‐analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2), pp.321-336.

Sari, J. H., Nissinen, A., Dong, W. X., Neal, S. C., Stewart Jr, C.N., Poppy, G. M. and Holopainen, J. K., 2008, Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to non-target herbivores in future climate?. Global Change Biology, 14(6): 1437-1454.

Shwetha, Sreenivas, A. G., Ashoka, J., Nadagoud, S. and Kuchnoor P. H., 2019, Effect of elevated CO2 and temperature on biochemistry of groundnut and inturn its effect on development of leaf eating caterpillar, Spodoptera litura Fabricius. Legume Research, 42(3): 399-404.

Srinivasa Rao, M., Manimanjari, D., Vanaja, M., Rama Rao, C. A., Srinivas, K., Rao, V. U. M., Venkateswarlu, B. and Jay, R., 2009, Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science, 12(1).

Stiling, P., Rossi, A. M., Hungate, B., Dijkstra, P., Hinkle, C. R., Knott Iii, W. M. and Drake, B., 1999, Decreased leaf‐miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological Applications, 9(1): 240-244.

Sun, Y. C., Feng, L., Gao, F. and Ge, F., 2011a, Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Science, 18(4): 451-461.

Sun, Y.C., Yin, J., Chen, F.J., Wu, G. and Ge, F., 2011b. How does atmospheric elevated CO2 affect crop pests and their natural enemies? Case histories from China. Insect Science, 18(4): 393-400.

Tefera, T., Goftishu, M., Ba, M. N. and Muniappan, R. M., 2019, A Guide to Biological Control of Fall Armyworm in Africa Using Egg Parasitoids. First edition, Nairobi, Kenya.

Vuorinen, T., Nerg, A. M., Ibrahim, M. A., Reddy, G. V. P. and Holopainen, J. K., 2004, Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiology, 135(4): 1984-1992.

Wang, G. H., Wang, X. X., Sun, Y. C. and Ge, F., 2014, Impacts of elevated CO2 on Bemisia tabaci infesting Bt cotton and its parasitoid Encarsia formosa. Entomologia Experimentalis et Applicata, 152(3): 228-237.

Wang, L., 2017, Impacts of Climate Change on Plant-Herbivore-Natural Enemy Interactions.

Xie, H., Zhao, L., Yang, Q., Wang, Z. and He, K., 2015, Direct effects of elevated CO2 levels on the fitness performance of Asian corn borer (Lepidoptera: Crambidae) for multigenerations. Environmental Entomology, 44(4): 1250-1257.

Yin, J., Sun, Y., Wu, G., Parajulee, M. N. and Ge, F., 2009, No effects of elevated CO2 on the population relationship between cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), and its parasitoid, Microplitis mediator Haliday (Hymenoptera: Braconidae). Agriculture, Ecosystems & Environment, 132(3-4): 267-275.

Zvereva, E. L. and Kozlov, M. V., 2006, Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change boilogy, 12(1): 27-41.

Submitted

2025-05-31

Published

2025-10-14

How to Cite

Lalbiakzuali. (2025). Influence of climate change on tri-trophic interaction in maize ecosystem. The Indian Journal of Agricultural Sciences, 95(10). https://doi.org/10.56093/ijas.v95i10.167408
Citation