Regulation of iron-siderophore uptake in a diazotrophic cyanobacterium Anabaena anabaena 7120
196 / 79
Keywords:
Anabaena 7120, Cyanobacterium, , Iron- siderophore uptakeAbstract
The regulation of 55Fe-siderophore uptake of was studied in a diazotrophic cyanobacterium Anabaena 7120. The uptake up to 20 min was found to be biphasic, a rapid first and steady second phase. A single kinetic system mediated the uptake of iron-siderophore with an apparent Km of 200 µM and a Vmax of 20 nmol iron taken up mg-1 protein min-1. 3-(3,4dichlorophenyl)-1, 1-dimethyl urea (DCMU), 2-n-heptyl-4-hydroxy quinoline (HOQNO), dicyclohexyl carbodiimide (DCCD), carbonyl cyanide p-fluoromethoxy phenyl hydrazone (FCCP) and carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) inhibited the iron-siderophore uptake significantly, whereas KCN inhibited marginally. No iron-siderophore uptake was observed under dark-aerobic and dark-anaerobic conditions. The siderophore schizokinen supported the maximum iron-siderophore uptake. However, the siderophore aerobactin and desferal could support only 53 and 3.4% iron-siderophore uptake, respectively as compared to its schizokinen counterpart.Downloads
References
Averil B A and Orme-Johnson W H. 1978. Iron sulphur protein and their synthetic analogue. (In) : Metal Ions in Biological Systems, pp 138–185, Sigel H (Ed). Marcel Dakker, New York.
Bailey K M and Taub F B. 1980. Effects of hydroxamate siderophore (strong Fe (III) chelators) on the growth of algae. Journal of Phycology 16 : 334–339 DOI: https://doi.org/10.1111/j.1529-8817.1980.tb03042.x
Boyer G L, Gillam A H. and Trick C. 1987. Iron chelation and uptake. (In) The Cyanobacteria, pp 415–36. Fay P and Van Baalen C (Eds). Elsevier Science Publishers, Amsterdam, The Netherlands.
Braun V, Hantke K and Koster W. 1998. Bacterial iron transport : mechanisms, genetics and regulation. (In) Metal Ions in Biological Systems, pp 67–145. Sigel A and Sigel H (Eds). Marcel Dakker, New York.
Budzikiewicz H. 2004. Bacterial catecholate siderophores (iron and metabolism). Org Chem. 1 : 163–8. DOI: https://doi.org/10.2174/1570193043488836
Crumbliss A L. 1991. Aqueous solution equilibrium and kinetic studies of iron siderophores and model siderophore complexes. (In) CRC Handbook of Microbial Iron Chelates, pp 177–233. Winkelmann G (Ed). CRC Press, Boston.
Gress C D, Trebe R G, Matz C J and Weger H G. 2004. Biological availability of iron to the freshwater cyanobacterium Anabaena flos-aquae. Journal of Phycology 40 : 879–86. DOI: https://doi.org/10.1111/j.1529-8817.2004.03165.x
Grevillegd G D. 1969. Mitchell’s chemiosmotic hypothesis of respiratory chain and phohotosynthetic phosphorylation. Current Topicon Bioenergetics 3: 1–5. DOI: https://doi.org/10.1016/B978-1-4831-9971-9.50008-0
Heytler P G and Prichard W W. 1962. A new class of uncoupling agents caronyl cyanide phenylhydrazones. Biochemistry and Biophysics Research Communication 7 : 272–5. DOI: https://doi.org/10.1016/0006-291X(62)90189-4
Katoh H, Hagino N, Grossman A R and Ogawa T. 2001. Gene essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal Bacteriology 183 : 2 779–84. DOI: https://doi.org/10.1128/JB.183.9.2779-2784.2001
Kerry A, Laudenbach D L and Trick C G. 1988. Influence of iron limitation and nitrogen source on siderophore production by cyanobacteria. Journal of Phycology 24 : 566–71. DOI: https://doi.org/10.1111/j.1529-8817.1988.tb04263.x
Kozlov I A and Skulachev P. 1977. H+ adenosine triphosphate and membrane energy coupling. Biochim Biophys Acta 463 : 29–89. DOI: https://doi.org/10.1016/0304-4173(77)90003-9
Lowry O H, Rosebrough N J, Farr A L and Radall R J. 1951. Protein measurement with the folin-phenol reagent. Journal of Biological DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Chemistry 193 : 265–75.
Martin-Luna B, Hernandez J A, Bes M T, Fillat M F and Peleato M L. 2006. Identification of a ferric uptake regulator from Microcystis aeruginosa PCC 7806. FEMS Microbiol Lettess 254 : 63–70. DOI: https://doi.org/10.1111/j.1574-6968.2005.00015.x
Michel K P and Pistorius E K. 2004. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency : The function of IdiA and IsiA. Physiology Plantarum 120 : 36–50. DOI: https://doi.org/10.1111/j.0031-9317.2004.0229.x
Raghuvanshi R, Singh S, Saxena R and Bisen P S. 2007a. Iron mediated metabolic regulations in a diazotophic cyanobacterium Anabaena 7120. Physiology and Molecular Biology of Plants 13 :143–54.
Raghuvanshi R, Singh S and Bisen P S. 2007b. Iron mediated regulation of growth and siderophore production in a diazotophic cyanobacterium Anabaena 7120. Indian Journal of Experimental Biology 45 : 563–7.
Ratledge C and Dover LG. 2000. Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 54 : 881–941. DOI: https://doi.org/10.1146/annurev.micro.54.1.881
Rippka R, Deruelles J, Waterbury J B, Herdman M and Stanier R Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111 : 1–61. DOI: https://doi.org/10.1099/00221287-111-1-1
Saxena R K, Raghuvanshi R, Singh S and Bisen P S. 2006. Iron induced metabolic changes in the diazotrophic cyanobacterium Anabaena 7120. Indian Journal of Experimental Biology 44 : 849–52.
Scott I D and Nicholls D G. 1980. Energy transduction in intact synaptosomes. Influence of plasma membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochemistry Journal 186 : 21–33. DOI: https://doi.org/10.1042/bj1860021
Stinzi A, Barnes C, Xu J and Raymond K M. 2000. Microbial iron transport via a siderophore shuttle : a membrane ion transport paradigm. Proceedings of National Academy of Science USA, 97 : 10 691–6. DOI: https://doi.org/10.1073/pnas.200318797
Wilhelm S W, Maxwell D P and Trick C G. 1996. Growth, iron requirement and siderophore production in iron limited Synechococcus PCC 7002. Limnol. Oceanogr. 41 : 89–97. DOI: https://doi.org/10.4319/lo.1996.41.1.0089
Xing W, Huang W, Li D and Liu Y. 2007. Effect of iron on growth, pigment content, photosystem I efficiency and siderophore production of Microcystis aeruginosa and Microcystis wesenbergii. Current Microbiology 55 : 94–8. DOI: https://doi.org/10.1007/s00284-006-0470-2
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2014 The Indian Journal of Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Agricultural Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.