Influence of cyanobacterial inoculants and planting methods of rice (Oryza sativa) on soil microbial parameters, aggregation and carbon content


114 / 32

Authors

  • AMIT A SHAHANE Ph D Scholar, Agronomy Division, Indian Agricultural Research Institute, New Delhi 110 012
  • Y V SINGH Principal Scientist, CCUBGA, Indian Agricultural Research Institute, New Delhi 110 012
  • RADHA PRASANNA Principal Scientist, Microbiology, Indian Agricultural Research Institute, New Delhi 110 012
  • DEBASHIS CHAKRABORTY Senior Scientist (Agricultural Physics), Indian Agricultural Research Institute, New Delhi 110 012
  • DINESH KUMAR Principal Scientist, Agronomy, Indian Agricultural Research Institute, New Delhi 110 012

https://doi.org/10.56093/ijas.v85i5.48524

Keywords:

Acetylene reductase activity, Microbial biomass carbon, Soil chlorophyll, System of rice intensification

Downloads

Download data is not yet available.

References

Acea M J, Prieto-fernandez A and Diz-Cid N. 2003. Cyanobacterial inoculation of heated soils: effect of microorganisms on carbon and nitrogen cycles and on chemical composition in soil surface. Soil Biology and Biochemistry 35: 513–24. DOI: https://doi.org/10.1016/S0038-0717(03)00005-1

Benbi D K, Biswas C R, Bawa S S and Kumar K. 1998. Influence of farmyard manure, inorganic fertilizers and weed control practices on some soil physical properties in a long-term experiment. Soil Use and Management 14: 52–4 DOI: https://doi.org/10.1111/j.1475-2743.1998.tb00610.x

Casida L E J, Klein D A and Santaro T. 1964. Soil dehydrogenase activity. Soil Science 98: 371–6. DOI: https://doi.org/10.1097/00010694-196412000-00004

Chan K Y, Bowman A and Oates A. 2001. Oxidizable organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science 166(1): 61–7. DOI: https://doi.org/10.1097/00010694-200101000-00009

Issa O M, Le Bissonnais Y, Defarge C, Marin B, Duval O, Bruand A, D’acqui L P, Nordenberg S and Annerman M. 2007. Effects of the inoculation of cyanobacteria on the Microstructure and the structural stability of a tropical soil. Plant and Soil 290: 209–19. DOI: https://doi.org/10.1007/s11104-006-9153-9

Marx M C, Wood M and Jarvis S C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry 33: 1 633–40. DOI: https://doi.org/10.1016/S0038-0717(01)00079-7

Nayak S, Prasanna R, Pabby A, Dominic T K and Singh P K. 2004. Effect of urea and BGA-Azolla bio-fertilizers on nitrogen fixation and chlorophyll accumulation in soil cores from rice fields. Biology and fertility of soils 40: 67–72. DOI: https://doi.org/10.1007/s00374-004-0738-2

Nunan N, Morgan M A and Herlihy M. 1998. Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biology and Biochemistry 30(12): 1 599–603. DOI: https://doi.org/10.1016/S0038-0717(97)00226-5

Prasanna R, Tripathi U, Dominic T K, Singh A K, Yadav A K and Singh P. 2003. An improvised technique for measurement of nitrogen fixation by blue-green algae and Azolla using intact soil cores. Experimental Agriculture 39: 145–50. DOI: https://doi.org/10.1017/S0014479702001187

Yoder R E. 1936. A direct method aggregate analysis and study of physical nature of erosion losses. Journal of American Society of agronomy 28: 337–51. DOI: https://doi.org/10.2134/agronj1936.00021962002800050001x

Downloads

Submitted

2015-05-13

Published

2015-05-13

Issue

Section

Short-Communication

How to Cite

SHAHANE, A. A., SINGH, Y. V., PRASANNA, R., CHAKRABORTY, D., & KUMAR, D. (2015). Influence of cyanobacterial inoculants and planting methods of rice (Oryza sativa) on soil microbial parameters, aggregation and carbon content. The Indian Journal of Agricultural Sciences, 85(5), 738-740. https://doi.org/10.56093/ijas.v85i5.48524
Citation