SSR based genetic diversity in Abelmoschus species
323 / 64
Keywords:
Diversity, Marker, Okra, PCR, SSRAbstract
Genetic diversity analysis and germplasm characterization are essential steps in plant breeding and molecular markers are proved tool to accomplish. In spite of its high economic value of okra as fresh vegetable in tropical and subtropical regions of Asia and Africa, little attention has been paid to assess its genetic diversity at molecular level. In present study, genetic diversity analysis was performed on 24 Abelmoschus accessions using SSR markers. A total of 85 amplicons were detected from 18 SSR markers. Amplicon analysis revealed a very high level (93.72%) of polymorphism with a mean polymorphic information content (PIC) value of 0.53. Number of alleles scored per primer ranged from 2 to 15 with an average of 4.72 alleles per primer. The UPGMA cluster analysis grouped Abelmoschus genotypes into three main clusters at a cut off value of 0.62. In conclusion, SSR markers enabled discrimination among accessions and provide valuable information for future use in improvement of this genomic resource poor otherwise important vegetable crop.Downloads
References
Akash M W, Shiyab S M and Saleh M I. 2013. Yield and AFLP analyses of inter-landrace variability in okra (Abelmoschus esculentus L.). Life Science Journal 10: 2 771–9.
Aladele S E. 2009. Morphological distinctiveness and metroglyph analysis of fifty accessions of West African okra (Abelmoschus caillei) (A. Chev.) Stevels. Journal of Plant Breeding and Crop Science 1(7): 273–80.
Aladele S E, Ariyo O J andde La Pena R. 2008. Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. African Journal of Biotechnology 7: 1 426–31.
Ariyo O J. 1990. Variation and heritability of fifteen characters on okra (Abelmoschus esculentus (L.) Moench).Tropical Agriculture 67: 213–6. DOI: https://doi.org/10.1093/oxfordjournals.aob.a088194
Ariyo O J. 1993. Genetic diversity in West African okra [Abelmoschus caillei (A. Chev.) Stevels]-Multivariate analysis of morphological and agronomic characteristics. Genetic Resources and Crop Evolution 40: 25–32. DOI: https://doi.org/10.1007/BF00053461
Bisht I S and Bhat K V. 2006. Okra (Abelmoschus spp.). (In) Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable Crops, 3, pp 148–62. Singh R J (Ed.). CRC Press.
Datta P C and Naug A. 1968. A few strains of Abelmoschus esculentus (L.) Moench- Their karyological study in relation to phylogeny and organ development. Beiträgezur Biologie der Pflanzen 45: 113–26.
Gulsen O, Karagul S and Abak K. 2007. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia Bratislava 62: 41–5. DOI: https://doi.org/10.2478/s11756-007-0010-y
Hamon S and Koechlin J. 1991. The reproductive biology of okra. 2. Self-fertilization kinetics in the cultivated okra (Abelmoschus esculentus), and consequences for breeding. Euphytica 53: 49–55. DOI: https://doi.org/10.1007/BF00032032
Haq I, Khan A A and Azmat M A. 2013. Assessment of genetic diversity in okra (Abelmoschus esculentus L.) using RAPD markers. Pakistan Journal of Agricultural Sciences 50: 655– 62.
Kochko A D and Hamon S. 1990. A rapid and efficient method for the isolation of restrictable total DNA from plants of the genus Abelmoschus. Plant Molecular Biology Reporter 8: 3–7. DOI: https://doi.org/10.1007/BF02668874
Kyriakopoulou O G, Arens P, Pelgrom K T B, Bebeli P and Passam H C. 2014. Genetic and morphological diversity of okra (Abelmoschus esculentus [L.] Moench.) genotypes and their possible relationships, with particular reference to Greek landraces. Scientia Horticulturae 171: 58–70. DOI: https://doi.org/10.1016/j.scienta.2014.03.029
Martinello G E, Leal N R, Amaral Jr A T, Pereira M G and Daher R F. 2001. Comparison of morphological characteristics and RAPD for estimating genetic diversity in Abelmoschus spp. Acta Horticulturae 546: 101–4. DOI: https://doi.org/10.17660/ActaHortic.2001.546.7
Mortz E, Krogh T N, Vorum H and Gorg A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionizationtime of flight analysis. Proteomics 1: 1 359–63. DOI: https://doi.org/10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q
Osawaru M E, Ogwu M C and Dania-Ogbe F M. 2013. Morphological assessment of the genetic variability among 53 Accessions of West African okra [Abelmoschus caillei (A. Chev.) Stevels] from South Western Nigeria. Nigerian Journal of Basic and Applied Sciences 21(3): 227–38. DOI: https://doi.org/10.4314/njbas.v21i3.8
Peakall R and Smouse P E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update. Bioinformatics 28: 2 537–9. DOI: https://doi.org/10.1093/bioinformatics/bts460
Poehlman J M and Sleper D A. 1995. Breeding Field Crops, 4th edn, pp 75–6. Iowa State Press.
Ramneek J, Pathak M and Pathak D. 2012. Preliminary investigation on the cross transferability of cotton SSR markers to Abelmoschus species.Crop Improvement 39: 80–4.
Saifullah M, Rabbani M G and Garvey E J. 2010. Estimation of genetic diversity of okra (Abelmoschus esculentus L. Moench) using RAPD markers. SAARC Journal of Agriculture 8: 19– 28.
Salameh N M. 2014. Genetic diversity of okra (Abelmoschus esculentus l.) genotypes from different agroecological regions revealed by amplified fragment length polymorphism analysis. American Journal of Applied Sciences 11: 1 157–63. DOI: https://doi.org/10.3844/ajassp.2014.1157.1163
Sawadogo M, Ouedraogo J T, Balma D, Ouedraogo M, Gowda BS, Botanga C and Timko M P. 2009. The use of cross species SSR primers to study genetic diversity of okra from Burkina Faso. African Journal of Biotechnology 8: 2 476–82.
Schafleitner R, Kumar S, Lin C, Hegde SG and Ebert A. 2013. The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis. Gene 517: 27–36. DOI: https://doi.org/10.1016/j.gene.2012.12.098
Torkpo S K, Danquah E Y, Offei S K and Blay E T. 2006. Esterase, total protein and seed storage protein diversity in Okra (Abelmoschus esculentus L. Moench). West African Journal of Applied Ecology 9: 1–7. DOI: https://doi.org/10.4314/wajae.v9i1.45677
Yap I V and Nelson R J. 1996. Winboot: a program for performing bootstrap analysis of binary data to determine the confidence of UPGMA-based dendrograms. IRRI, Manilla, Phillipines.
Yuan C Y, Zhang C, Wang P, Hu S, Chang H P, Xiao W J, Lu X T, Jiang S B, Ye J Z and Guo X H. 2014. Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers. Genetics and Molecular Research 13: 3 165–75. DOI: https://doi.org/10.4238/2014.April.25.1
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2015 The Indian Journal of Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Agricultural Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.