Feasibility test of agricultural residues through characterization for utilization in plasma gasification


327 / 57

Authors

  • J GITANJALI Research Scholar,Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003
  • S PUGALENDHI Professor,Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003
  • S KAMARAJ Professor, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003
  • S KARTHIKEYAN Professor, Department of Bioenergy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003
  • V J F KUMAR Professor, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Kumulur, Tamil Nadu 621 712

https://doi.org/10.56093/ijas.v85i12.54290

Keywords:

Agro residues, Biochemical characterization, Plasma gasification, TGA

Abstract

Agricultural residues were characterized to determine their feasibility as feedstock for plasma gasification. Husk, stalk, straw and shell were selected for the study and proximate analysis, elemental composition analysis, thermal value analysis were carried out using standard procedures. Producer gas generated from these bio-residues is well suited for plasma gasification process where the working temperature is between 1200-2000ºC. These substances have moisture content in the range of 5-12%, and volatile matter content of 58-70%, offering good burning characteristics and conversion to electricity. The fixed carbon content of 13 to 20% contributes significantly to its calorific value. The average calorific value of selected agricultural residues (18.27 MJ/kg) was higher than the calorific value of feedstock (12 to 16 MJ/kg) used in plasma gasification, thus reinforcing their suitability further. It was found that selected agricultural residues could be adopted and promising fuel for plasma generation and deserve further development as a sustainable and renewable alternative.

Downloads

Download data is not yet available.

References

Bhasin K C. 2009. Plasma arc gasification for waste management. Electronics for you (2): 123–30.

Bhavya B, Singh R and Bhaskar T. 2015. Preparation of feedstocks for gasification for synthetic liquid fuel production. (In) Fundamentals, Processes and Applications, pp 57–71. Woodhead Publishing Series in Energy. DOI: https://doi.org/10.1016/B978-0-85709-802-3.00003-5

Dejtrakulwonga C and Patumsawad S. 2014. Four zones modeling of the downdraft biomass gasification process: Effects of moisture content and air to fuel ratio. Energy Procedia 52: 142–9. DOI: https://doi.org/10.1016/j.egypro.2014.07.064

Dutta P P, Pandey V, Das A R, Sen S and Baruah D C. 2014. Down draft gasification modelling and experimentation of some indigenous biomass for thermal applications. Energy Procedia 54: 1–34. DOI: https://doi.org/10.1016/j.egypro.2014.07.246

Energy statistics. 2014. Central statistical office, Ministry of statistics and programme implementation, Government of India, New Delhi, pp 1–88.

Hiloidhari M, Das D and Baruah D C. 2014. Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews 32: 504–12. DOI: https://doi.org/10.1016/j.rser.2014.01.025

Hlina M, Hrabovsky M, Kavka T and Konrad M. 2014. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management 34(1): 63–6. DOI: https://doi.org/10.1016/j.wasman.2013.09.018

Huang H and Tang L. 2007. Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management 48: 1 331–7. DOI: https://doi.org/10.1016/j.enconman.2006.08.013

Isam J, Syed S R and Arnar S V. 2013. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification. Energy Conversion and Management 65: 801–9. DOI: https://doi.org/10.1016/j.enconman.2012.03.010

Je Lueng Shie, Feng-Ju Tsou and Kae-Long Lin. 2010. Steam plasmatron gasification of distillers grains residue from ethanol production. Bioresource Technology 101: 5 571–7. DOI: https://doi.org/10.1016/j.biortech.2010.01.118

Je-Lueng Shie, Li-Xun Chen, Kae-Long Lin and Ching-Yuan Chang. 2014. Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste. Energy 66(1): 82–9. DOI: https://doi.org/10.1016/j.energy.2013.12.042

Keith K H C, John F P, Chi W H and Gordon M. 2004. Process design and feasibility study for small scale MSW gasification. Chemical Engineering Journal 105: 31–41. DOI: https://doi.org/10.1016/j.cej.2004.07.012

Khardiwar Mahadeo, Anil Kumar Dubey, Dilip Mahalle, Shailendra Kumar. 2014. Study on physical and chemical properties of crop residues briquettes for gasification. American Journal of Energy Engineering 2(2): 51–8. DOI: https://doi.org/10.11648/j.ajee.20140202.11

Kuang C L, Yuan C L and Yi H H. 2014. Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production. Energy 64: 567–74. DOI: https://doi.org/10.1016/j.energy.2013.09.055

Massimiliano Materazzi, Paola Lettieri, Luca Mazzei, Richard Taylor and Chris Chapman. 2014. Tar evolution in a two stage fluid bed – plasma gasification process for waste valorization. Fuel Processing Technology 128: 146–57. DOI: https://doi.org/10.1016/j.fuproc.2014.06.028

Mamta Awasthi and Karishma Rani Deepika. 2013. Biochemical characterization of agricultural Residues for utilization in gasification process: a Necessity for rural sector. Special International Journal of Sustainable Development and Green Economics 2(1): 2–8.

Mountouris A, Voutsas E and Tassios D. 2006. Solid waste plasma gasification: Equilibrium model development and energy analysis. Energy Conversion and Management 47: 1 723–37. DOI: https://doi.org/10.1016/j.enconman.2005.10.015

Peter McKendry. 2002. Review paper on energy production from biomass (part 1): overview of biomass. Bioresources Technology 83: 37–46. DOI: https://doi.org/10.1016/S0960-8524(01)00118-3

Prakash Parthasarathy, Sheeba Narayanan and Lawrence Arockiam. 2013. Study on kinetic parameters of different biomass samples using thermo gravimetric analysis. Biomass and Bioenergy 58: 58-66. DOI: https://doi.org/10.1016/j.biombioe.2013.08.004

Qinglin Zhang, Liran Dor, Lan Zhang and Weihong Yang. 2012. Wlodzimierz Blasiak. Performance analysis of municipal solid waste gasification with steam in a Plasma Gasification Melting reactor. Applied Energy 98: 219–29. DOI: https://doi.org/10.1016/j.apenergy.2012.03.028

Qinglin Z, Liran D, Dikla F, Weihong Y and Wlodzmierz B. 2012. Gasification of municipal solid waste in the Plasma Gasification Melting process. Applied Energy 90: 106–12. DOI: https://doi.org/10.1016/j.apenergy.2011.01.041

Qinglin Zang, Yueshi Wu, Liran Dor, Weihong yang and Wlodzimierz Blasiak. 2013. A thermodynamic analysis of solid waste gasification in the plasma gasification melting process. Applied Energy 112: 405–13. DOI: https://doi.org/10.1016/j.apenergy.2013.03.054

Sang Jun Yoon and Jae Goo Lee. 2012. Hydrogen rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch. International Journal of Hydrogen Energy 37: 17 093–100. DOI: https://doi.org/10.1016/j.ijhydene.2012.08.054

Shane M, Paola L, Chris C and Luca M. 2012. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Management 32: 676–84. DOI: https://doi.org/10.1016/j.wasman.2011.08.020

Shane Morrin, Paola Lettieri, Chris Chapman and Richard Taylor. 2014. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species. Waste Management 34: 28–35. DOI: https://doi.org/10.1016/j.wasman.2013.10.005

Shen Chen, Aihong Meng, Yanqiu Long, Hui Zhou, Qinghai Li and Yanguo Zhang. 2014. TGA pyrolysis and gasification of combustible municipal solid waste. Journal of Energy Institute. doi:10.1016/j.joei.2014.07.007 DOI: https://doi.org/10.1016/j.joei.2014.07.007

Spyridon Achinas and Evangelos Kapetanios. 2012. Basic design of an integrated plasma gasification combined cycle system for electricity generation from RDF. International Journal of Engineering Research and Technology 1(10): 1–8.

Spyridon Achinas and Evangelos Kapetanios. 2013. Efficiency Evaluation of RDF Plasma Gasification Process. Energy and Environment Research 3(1): 58–74. DOI: https://doi.org/10.5539/eer.v3n1p150

Talebi G and Van Goethem M. 2014. Synthesis gas from waste plasma gasification for fueling lime kiln. Chemical Engineering Transactions 37: 619–24.

Wen K T, Je L S, Ching Y C, Chiung F C, Cheng F L, Sen Y Y, Jing T K, Dai G S, Yii D Y and Duu J L. 2009. Products and bioenergy from the pyrolysis of rice straw via radio frequency plasma and its kinetics. Bioresource Technology 100: 2 052– 61.

Xiang Fang and Li Jia. 2012. Experimental study on ash fusion characteristics of biomass. Bioresource Technology 104: 769– 74. DOI: https://doi.org/10.1016/j.biortech.2011.11.055

Xiu Shuangninga, Yi Weimingb and Baoming Lia. 2005. Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor. Biomass and Bioenergy 29: 135–41. DOI: https://doi.org/10.1016/j.biombioe.2005.03.002

Downloads

Submitted

2015-12-14

Published

2015-12-11

Issue

Section

Articles

How to Cite

GITANJALI, J., PUGALENDHI, S., KAMARAJ, S., KARTHIKEYAN, S., & KUMAR, V. J. F. (2015). Feasibility test of agricultural residues through characterization for utilization in plasma gasification. The Indian Journal of Agricultural Sciences, 85(12), 1534-1539. https://doi.org/10.56093/ijas.v85i12.54290
Citation