Biochemical characterization of elite maize (Zea mays) germplasm for carotenoids composition


336 / 153

Authors

  • S CHANGAN ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • D P CHAUDHARY ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • S KUMAR ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • B KUMAR ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • J KAUL ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • S GULERIA ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • S L JAT ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • A SINGODE ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • M TUFCHI ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • S LANGYAN ICAR-Indian Agricultural Research Institute, New Delhi 110 012
  • O P YADAV ICAR-Indian Agricultural Research Institute, New Delhi 110 012

https://doi.org/10.56093/ijas.v87i1.67017

Keywords:

β-carotene, β-cryptoxanthin, Carotenoids, Maize, QPM, Zeaxanthin

Abstract

A set of 100 inbred lines comprising of 50 normal and 50 quality protein maize (QPM) were analyzed for carotenoids
composition such as total carotenoids, β-carotene, β-cryptoxanthin and zeaxanthin. Seven QPM {HKI-3-4-8-6, HKI
34(1+2)-1, HKI 164-4(1-3), NP-06-07R-76-8, NP-06-07R-80-6, LQPM-42 and LQPM-40} and 9 normal lines {DML-288, DML-2, DML-112, DML-309, DML-45, BAJIM-08-27, BAJIM-13-1, HKI 1105 and HKI 1155} were found to possess significantly higher carotenoids as compared to the check (DMRQPM 103). Kernel colour intensity and total
carotenoid contents showed highly significant positive correlation (r = 0.491**), whereas no significant correlation
was observed between kernel colour and β-carotene (r = 0.014). Based on the carotenoids studied, a set of 16 lines
{HKI-3-4-8-6, HKI 34(1+2)-1, HKI 164-4(1-3), NP-06-07R-76-8, NP-06-07R-80-6, LQPM-42, LQPM-40, DML-288, DML-2, DML-112, DML-309, DML-45, BAJIM-08-27, BAJIM-13-1, HKI 1105 and HKI 1155} was identified as promising lines which can effectively be utilized in the future breeding programmes towards the development of nutritionally improved maize (Zea mays L.).

Downloads

Download data is not yet available.

References

Abdel-Aal E M, Akhtar H, Zaheer K and Ali R. 2013. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5: 1 169–85. DOI: https://doi.org/10.3390/nu5041169

Atlin G N, Palacios N, Babu R, Das B, Twumas-Afriyie S, Friesen D K, Groote H D, Vivek B and Pixley K V. 2011. Quality protein maize: Progress and prospects. Plant Breeding Reviews 34: 83–130. DOI: https://doi.org/10.1002/9780470880579.ch3

Babu R, Nair S K, Kumar A, Venkatesh S, Sekhar J C, Singh N N, Srinivasan G and Gupta H S. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theoretical and Applied Genetics 111: 888–97. DOI: https://doi.org/10.1007/s00122-005-0011-6

Bouis H E and Welch R M. 2010. Biofortification- a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: S20-S32. DOI: https://doi.org/10.2135/cropsci2009.09.0531

Buckner B, Kelson T L and Robertson D S. 1990. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2: 867–76. DOI: https://doi.org/10.1105/tpc.2.9.867

Cardoso W S, Peas M C D, Galvao J C C, Rios S D, Guimaraes P E D, Schaffert R E and Borem A. 2009. Variability of maize genotypes for grain carotenoid composition. Pesquisa Agropecuária Brasileira 44: 164–72. DOI: https://doi.org/10.1590/S0100-204X2009000200008

Chander S, Meng Y, Zhang Y, Yan J and Li J. 2008. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. Journal of Agriculture and Food Chemistry 56: 6 506–11. DOI: https://doi.org/10.1021/jf7037967

Chandler K, Lipka A E, Owens B F, Li H, Buckler E S, Rocheford T and Gore M A. 2013. Genetic analysis of visually scored orange kernel color in maize. Crop Science 53 :189–200. DOI: https://doi.org/10.2135/cropsci2012.02.0129

Gupta H S, Babu R, Agrawal P K, Mahajan V, Hossain F and Nepolen T. 2013. Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding 132: 77–82. DOI: https://doi.org/10.1111/pbr.12009

Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J and Buckler E S. 2008. Natural genetic variation in Lycopene Epsilon Cyclase tapped for maize biofortification. Science 319: 330–3. DOI: https://doi.org/10.1126/science.1150255

Harrison G G. 2010. Public health interventions to combat micronutrient deficiencies. Public Health Reviews 32: 256–66. DOI: https://doi.org/10.1007/BF03391601

Hulshof P J M, Schuil T K, West C E and Hollman P C H. 2007. Quick screening of maize kernels for provitamin A content. Journal of Food Composition Analysis 20: 655–61. DOI: https://doi.org/10.1016/j.jfca.2006.04.014

Krinsky N I, Landrum J T and Bone R A. 2003. Biological mechanism of the protective role of lutein and zeaxanthin in the eye. Annual Review Nutrition 23: 171–201.

Kuhnen S, Lemos P M, Campestrini L H, Ogliari J B, Dias P F and Maraschin M. 2011. Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. Journal of the Science of Food and Agriculture 91: 1 548–53. DOI: https://doi.org/10.1002/jsfa.4346

Mares J A. 2013. Relationships of lutein and zeaxanthin to age-related macular degeneration: Epidemiological evidence. (In) Carotenoids and Retinal Disease. Landrum J and Nolan J (Eds). Francis and Taylor, CRC Press, New York. DOI: https://doi.org/10.1201/b15556-5

Muthusamy V, Hossain F, Nepolean T, Choudhary M, Saha S, Bhat J S, Prsanna B M and Gupta H S. 2014. Enrichment of kernel β-carotene in maize hybrids using marker-assisted backcross breeding strategy. (In) Proceedings of 2nd Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition, and Environmental Security, Bangkok, Thailand, pp 207–13.

Nestel P, Bouis H E, Meenakshi J V and Pfeiffer W. 2006. Biofortification of staple food crops. Journal of Nutrition 136: 1 064–7. DOI: https://doi.org/10.1093/jn/136.4.1064

Ortiz-Monasterio I, Palacious-Rojas N, Meng E, Pixley K V, Trethowan R M and Pena-Bautista R J. 2007. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46: 293–307. DOI: https://doi.org/10.1016/j.jcs.2007.06.005

Prasanna B M, Vasal S K, Kassahun B and Singh N N. 2001. Quality protein maize. Current Science 81: 1 308–19.

Quackenbush F W, Firch J G, Rabourn W J, McQuistan M, Petzold W N and Kargl T E. 1961. Composition of corn, analysis of carotenoids in corn grain. Journal of Agriculture and Food Chemistry 9: 132–5. DOI: https://doi.org/10.1021/jf60114a012

Reddy B V S, Ramesh S and Longvah T. 2005. Prospects of breeding for micronutrients and β-carotene-dense sorghums. International Sorghum Millet Newsletter 46: 10–4.

Rodriguez-Amaya D B and Kimura M. 2004. HarvestPlus handbook for carotenoid analysis. Washington DC.

Safawo T, Senthil N, Raveendran M, Vellaikumar S, Ganesan K N, Nallathambi G, Saranya S, Shobhana V G, Abirami B and Gowri E V. 2010. Exploitation of natural variability in maize for β - carotene content using HPLC and gene specific markers. Electronic Journal of Plant Breeding 1: 548–55.

Sivaranjani R, Prasanna B M, Hossain F and Santha I M. 2013. Genetic variability for total carotenoid concentration in selected tropical maize (Zea mays) inbred lines. Indian Journal of Agricultural Sciences 83: 431–6.

Sofi P A, Wani S A, Rather A G and Wani S. 2009. Review article: Quality protein maize (QPM): Genetic manipulation for the nutritional fortification of maize. Journal Plant Breeding and Crop Science 1: 244–53.

Tanumihardio S A, Bouis H, Hotz C, Meenakshi J V and McClafferty B. 2008. Biofortification of staple crops: an emerging strategy to combat hidden hunger. Comprehensive Reviews on Food Science and Food Safety 7: 329–34.

Vallabhaneni R, Gallagher C E, Licciardello N, Cuttriss A J, Quinlan R F and Wurtzel E T. 2009. Metabolite sorting of a germplasm collection reveals the Hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiology 151: 1635–45. DOI: https://doi.org/10.1104/pp.109.145177

Vasal S K. 2001. Quality protein maize development: An exciting experience. (In) Proceeding of Seventh Eastern and South Africa Regional Maize Conference, Kenya, pp 3–6.

Weber E. 1987. Carotenoids and tocols of corn grain determined by HPLC. Journal of American Oil Chemist Society 64: 1 129–34. DOI: https://doi.org/10.1007/BF02612988

World Health Organization. 2009. Global prevalence of vitamin A deficiency in population at risk 1995-2005. (In) WHO global database on vitamin a deficiency, Geneva, pp 1–55.

Yan J B, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X H, Skinner D J, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios N, Li J S, DellaPenna D, Brutnell T P, Buckler E S, Warburton M L and Rocheford T. 2010. Rare genetic variation at Zea mays crtRB1 increases b-carotene in maize grain. Nature Genetics 42: 322–7. DOI: https://doi.org/10.1038/ng.551

Downloads

Submitted

2017-01-19

Published

2017-01-24

Issue

Section

Articles

How to Cite

CHANGAN, S., CHAUDHARY, D. P., KUMAR, S., KUMAR, B., KAUL, J., GULERIA, S., JAT, S. L., SINGODE, A., TUFCHI, M., LANGYAN, S., & YADAV, O. P. (2017). Biochemical characterization of elite maize (Zea mays) germplasm for carotenoids composition. The Indian Journal of Agricultural Sciences, 87(1), 46–50. https://doi.org/10.56093/ijas.v87i1.67017
Citation