GENETICS, GENOMICS AND BREEDING FOR DISEASE RESISTANCE IN POULTRY


Abstract views: 475 / PDF downloads: 33

Authors

  • R. Richard Churchil Professor and Head, Department of Poultry Science, Madras Veterinary College, TANUVAS, Chennai – 600 007

Keywords:

Breeding, disease resistance, heritability, poultry, selection

Abstract

The diseases in poultry cause huge losses in the form of mortality in acute infections or as substandard performance due to chronic illness. Biosecurity and vaccination are considered as two important primary strategies for disease prevention in poultry. On the other hand, breeding for disease resistance is an alternate strategy to combat the damages of diseases. Although, attempts were initiated to develop disease resistant poultry by breeding almost a century before, this branch of science renewed the interest among scientists because of catastrophic emerging and reemerging diseases like Avian influenza. It has proven over a period of time that poultry  exhibits genetic resistance to viral diseases like avian leukosis complex, Marek’s disease, avian influenza and Newcastle disease, bacterial disease like salmonellosis and may parasitic infestations. The key genes responsible for resistance to specific diseases have also been demonstrated. The breeding attempts for developing disease resistant poultry has yielded positive results with varying degree of success. The advent of sophisticated molecular methods like genomic selection using highdensity SNP chips, RNA-seq technique and identification of key marker genes and transgenesis could complement the conventional breeding methods to a larger extent in developing disease resistant poultry.  

Downloads

Download data is not yet available.

References

Abdrakhmanov, I., Lodygin, D., Geroth, P., Arakawa, H., Law, A., Plachy, J., Kornm, B. and Buerstedde, J.M. (2000). A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Research, 10: 2062- 2069.

Adkins, H. B., Brojatsch, J. and Young, J. A. (2000). Identification and characterization of a shared TNFR related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. Journal of Virology, 74: 3572 – 3578.

Alam, J., Rahman, M. M., Halder, J., Islam, M. R., Sarkar, N., Jabeen, I., Hossain, M. M. K., Rubaya, R., Alim, M.A. and Bhuyan, A. A. (2022). Myxovirus resistance (Mx) gene diversity in avian influenza virus infections. Biomedicines, 10(11): 2717.

Asmundson, V.S. and Biely, J. (1932). Inheritance and resistance to fowl paralysis (neuro-lymphomatosis gallinarum). I. Differences in susceptibility. Canadian Journal of Research, 6: 171–176.

Benfield, C. T. O., Lyall, J. W., Kochs, G. and Tiley L. S. (2008). Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts of in vitro surrogate assays. Journal of Virology, 82: 7533–7539.

Biggs, P. M. (1982). The world of poultry diseases. Avian Pathology, 11: 281-300.

Bishop, S.C. (2014). Disease genetics: successes, challenges and lessons learnt. In: 10th world congress of genetics applied to livestock production, Vancouver, BC.

Briles W.E., McGibbon W.H. and Irwin M.R. (1950). On multiple alleles affecting cellular antigens in the chicken. Genetics, 35: 633-652.

Bitgood, J.J. and Somes, R.G. (1990). Linkage relationships and gene mapping. In: Poultry Breeding and Genetics (R. D Crawford, Ed.), Elsevier, Amsterdam, The Netherlands, pp. 469-495.

Bumstead, N. and Barrow, P.A. (1993). Resistance to Salmonella gallinarum, Salmonella pullorum and Salmonella enteritidis in inbred lines of chickens. Avian Diseases, 37: 189–193.

Calenge, F., Kaiser, P., Vignal, A. and Beaumont. C. (2010). Genetic control of resistance to Salmonellosis and to Salmonella carrier state in fowl: a review. Genetics Selection Evolution, 42: 11.

Calenge, F., Lecerf, F., Demars, J., Feve, K., Vignoles, F., Pitel, F., Vignal, A., Velge, P., Sellier, N. and Beaumont, C. (2009). QTL for resistance to Salmonella carrier state confirmed in both experimental and commercial chicken lines. Animal Genetics, 40: 590-597.

Carre, W., Wang, X., Porter, T. E., Nys, Y., Tang, J., Bernberg, E., Morgan, R., Burnside, J., Aggrey, S. E., Simon, J. et al. (2006). Chicken genomics resource: sequencing and annotation of 35, 407 ESTs from single and multiple tissue cDNA libraries and CAP3 assembly of a chicken gene index. Physiological Genomics, 25: 514-524.

Cavero, D., Schmutz, M., Philipp, H.C. and Preisinger, R. (2009). Breeding to reduce susceptibility to Escherichia coli in layers. Poultry Science, 88: 2063 – 2068.

Chai, N. and Bates, P. (2006). Na +/H exchanger type 1 is a receptor for pathogenic subgroup Journal of avian leukosis virus. Proceedings of the National Academy of Sciences of the United States of America, 103(14): 5513– 5516.

Chen, J., Li, J., Li, L., Liu, P., Xiang, Y. and Cao, W. (2020). Single amino acids G196 and R198 in hr1 of subgroup K avian leukosis virus glycoprotein are critical for Tva receptor binding. Frontiers in Microbiology, 11: 596586.

Churchil, R.R. (2019). Advances in Avian Transgenesis. In: Recent trends in poultry productions (P. Tiwari O, P. Dinani, eds.) International Books and Periodicals Supply Service, 38, Nishant Kunj, Pitampura Main Road, Delhi – 110 034.

Churchil, R.R. and Sharma, D. (2013). Transgenic spermatozoa production in chicken: Technology optimization, ISBN: 9783639510324, Scholars Press, Saarbrucken, Germany.

Churchil, R.R., Gupta, J., Singh, A. and Sharma, D. (2011). Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration. British Poultry Science, 52: 287-291.

Dar, M.A., Mumtaz, P.T., Bhat, S.A., Nabi, M., Taban, Q., Shah, R.A., Khan, H.M. and Ahmad, S.M. (2018). Genetics of Disease Resistance in Chicken. In Tech Open. doi: 10.5772/intechopen.77088.

Deist, M.S., Gallardo, R.A., Bunn, D.A., Dekkers, J.C.M., Zhou, H. and Lamont, S.J. (2017). Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genomics, 18: 989.

Del Vesco, A.P., Kaiser, M.G., Monson, M.S., Zhou, H. and Lamont, S.J. (2020). Genetic responses of inbred chicken lines illustrate importance of eIF2 family and immune-related genes in resistance to Newcastle disease virus. Scientific Reports, 10: 6155.

Drobik-Czwarno, W., Wolc, A., Fulton, J., Arango, J., Jankowski, T., O’Sullivan, N. and Dekkers, J. (2018). Identifying the genetic basis for resistance to avian influenza in commercial egg layer chickens. Animal, 12(7): 1363-1371.

Elleder, D., Plachý, J., Hejnar, J., Geryk, J. and Svoboda, J. (2004). Close linkage of genes encoding receptors for subgroups A and C of avian sarcoma/ leucosis virus on chicken chromosome 28. Animal Genetics, 35(3): 178–181.

Elleder, D., Stepanets, V., Melder, D.C., Senigl, F., Geryk, J., Pajer, P., Plachy, J., Hejnar, J., Svoboda, J. and Federspiel, M.J. (2005). The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin super family. Journal of Virology, 79: 10408–10419.

Flock, D.K., Von Krosigk, C.M., Pirchner, F. and Landgraf, H. (1975). Genetische veraenderungen hinsichtlich Marek-Resistance und productions eigenscaften in Leghornkreuzungen. Archiv Gefluegkd, 1: 2l-28.

Friars, G.W., Chambers, J.R., Kennedy, A. and Smith A.D. (1972). Selection for resistance to Marek’s disease in conjunction with other economic traits in chickens, Avian Diseases, 16: 2-10.

Fulton, J.E., Arango, J., Ali, R.A., Bohorquez, E.B., Lund, A.R., Ashwell, C.M., Settar, P., O’Sullivan, N.P. and Koci, M.D. (2014). Genetic variation within the Mx gene of commercially selected chicken lines reveals multiple haplotypes, recombination and a protein under selection pressure. PLoS One, 9: e108054.

Gavora, J.S., Grunder, A.A., Spencer, J.L., Gowe, R.S., Robertson, A. and Speckmann, G.W. (1974). An assessment of effects of vaccination on genetic resistance to Marek's Disease. Poultry Science, 53: 889 - 897.

Gavora, J.S., Chesnais, J. and Spencer, J.L. (1983). Estimation of variance components and heritability in populations affected by disease: lymphoid leukosis in chickens. Theoretical and Applied Genetics, 65: 317–322.

Giansanti, F., Rossi, P., Massucci, M.T., Botti, D., Antonini, G., Valenti, P. and Seganti, L. (2002). Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin. Biochemistry and Cell Biology, 80: 125 – 130.

Gul, H., Habib, G., Khan, I.M., Rahman, S.U., Khan, N.M., Wang, H., Khan, N.U. and Liu, Y. (2022). Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Frontiers in Veterinary Science, 10(9): 1032983.

Hedman, H.D., Vasco, K.A. and Zhang, L. (2020). A Review of antimicrobial resistance in poultry farming within low-resource settings. Animals (Basel), 24; 10(8): 1264.

Hillier, L.W., Miller, W., Birney, E., Warren, W., Hardison, R.C., Ponting, C.P., Bork, P., Burt, D.W., Groenen, M.A.M., Delany et al., (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution, Nature, 432: 695-716.

Hong, Y.H., Kim, E.S., Lillehoj, H.S., Lillehoj, E.P. and Song, K.D. (2009). Association of resistance to avian coccidiosis with single nucleotide polymorphisms in the zyxin gene, Poultry Science, 88(3): 511-518.

Hu, J., Bumstead, N., Barrow, P., Sebastiani, G., Olien, L., Morgan, K. and Malo, D. (1997). Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Research, 6:693–704.

Hunt, H.D., Jadhao, S. and Swayne D.E. (2010). Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus. Avian Diseases, 54: 572–575.

ICGS, (2004). International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 695-716.

Islam, M. A., Rony, S. A., Rahman, M. B., Cinar, M. U., Villena, J., Uddin, M. J. and Kitazawa, H. (2020). Improvement of disease resistance in livestock: application of immunogenomics and CRISPR/Cas9 technology. Animals, 10: 2236.

Jie, H. and Liu, Y. (2011). Breeding for disease resistance in poultry: Opportunities with challenges. World's Poultry Science Journal, 67(4): 687-696.

Kaufman J. F. and Lamont S. J. (1996). The chicken major histocompatibility complex. In The major histocompatibility complex region of domestic animal species (L. B. Schook and S.J. Lamont, eds). CRC Press, Boca Raton, Florida, 35-64.

Kaufman, J., Milne, S., Gobel, T. W., Walker, B. A., Jacob, J. P., Auffray, C., Zoorob, R. and Beck. S. (1999). The chicken B locus is a minimal essential major histocompatibility complex. Nature, 401: 923–925.

Klasing, K. C. and Korver, D. R. (1997). Leukocytic cytokines regulate growth rate and composition following activation of the immune system. Journal of Animal Science, 75: 58–67.

Koch, M., Camp, S., Collen, T., Avila, D., Salomonsen, J., Wallny, H. J., Van Hateren, A., Hunt, L., Jacob, J. P., Johnston, F. et al. (2007). Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity, 27(6): 885-899.

Koslová A, Kučerová D, Reinišová M, Geryk J, Trefil P. and Hejnar J. (2018). Genetic resistance to Avian Leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses, 10(11): 605.

Lamont, S.J. and Hasenstein, J.R. (2005). Genes for resistance to Salmonella in poultry, A. S. Leaflet R 2017, Iowa State University Animal Industry Report. https://www.iastatedigitalpress.com/air/article/6023/galley/5888/view/.

Lamont, S.J., Kaiser, M.G. and Liu, W. (2002). Candidate genes for resistance to Salmonella enteritidis colonization in chickens as detected in a novel genetic cross. Veterinary Immunology and Immunopathology, 87: 423–428.

Lee, H. J., Lee, K. Y., Jung, K. M., Park, K. J., Lee, K. O., Suh, J.Y., Yao, Y., Nair, V. and Han, J.Y. (2017). Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). Developmental and Comparative Immunology, 77: 340 – 349.

Leveque, G., Forgetta, V., Morroll, S., Smith, A., Bumstead, N., Barrow, P., LoredoOsti, J., Morgan, K. and Malo, D. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infection and Immunity, 71: 1116-1124.

Li, X., Nie, C., Zhang, Z., Wang, Q., Shao, P., Zhao, Q., Chen, Y., Wang, D., Li, Y., Jiao, W. et al. (2018). Evaluation of genetic resistance to Salmonella pullorum in three chicken lines. Poultry Science, 97(3): 764-769.

Liu, W., Miller, M. M. and Lamont, S. J. (2002). Association of MHC class I and class II gene polymorphisms with vaccine or challenge response to Salmonella enteritidis in young chicks. Immunogenetics, 54: 582–590.

Luo, C., Qu, H., Ma, J., Wang, J., Li, C., Yang, C., Hu, X., Li, N. and Shu, D. (2013). Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genetics, 14: 42.

Lyall, J., Irvine, R., Sherman, A., McKinley, T.J., Núñez, A., Purdie, A., Outtrim, L., Brown, L. H., Rolleston-Smith, G. Sang, H. and Tiley, L. (2011). Suppression of avian influenza transmission in genetically modified chickens, Science, 331: 223-226.

Mariani, P., Barrow, P.A., Cheng, H.H., Groenen, M.M., Negrini, R. and Bumstead, N.(2001). Localization to chicken chromosome 5 of a novel locus determining Salmonellosis resistance, Immunogenetics, 53: 786–791.

Masabanda, J.S., Burt, D.W., O'Brien, P.C., Vignal, A., Fillon, V., Walsh, P.S., Cox, H., Tempest, H.G., Smith, J. and Habermann, F. (2004). Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics, 166(3): 1367-1373.

Maas, H. J., Antonisse, H.W., van der Zypp, A.J., Groenendal, J.E. and Kok, G.L. (1981). The development of two White Plymouth Rock lines resistant to Marek's disease by breeding from survivors. Avian Pathology, 10(2): 137-150.

Mo, G., Wei, P., Hu, B., Nie, Q. and Zhang, X. (2022). Advances on genetic and genomic studies of ALV resistance. Journal of Animal Science and Biotechnology, 13: 123.

Mpenda, F.N., Keambou, C.T., Kyallo, M., Pelle, R., Lyantagaye, S.L. and Buza, J. (2019). Polymorphisms of the chicken Mx gene promoter and association with chicken embryos’ susceptibility to virulent Newcastle disease virus challenge, BioMed Research International, 2019: 1486072.

Pal, A. and Chakravarty, A. K. (2020). Disease resistance for different livestock species. In: Genetics and breeding for disease resistance of livestock, 271– 296 pp.

Pavlidis, H.O., Balog, J.M., Stamps, L.K., Hughes Jr, J.D., Huff, W.E. and Anthony, N.B. (2007). Divergent selection for ascites incidence in chickens. Poultry Science, 86: 2517-2529.

Pitcovski, J., Heller, D.E., Cahaner, A. and Peleg, B.A. (1987). Selection for early responsiveness of chicks to Escherichia coli and Newcastle disease virus. Poultry Science, 66(8): 1276-1282.

Rai, T., Marble, D., Rihani, K. and Rong, L. (2004). The spacing between cysteines two and three of the LDL-A module of Tva is important for subgroup a avian sarcoma and leukosis virus entry. Journal of Virology, 78(2): 683–691.

Rauw, W.M. (2012). Immune response from a resource allocation perspective. Frontiers in Genetics, 3: 267.

Reinišová, M., Plachý, J., Trejbalová, K., Šenigl, F., Kučerová, D., Geryk, J. Svoboda, J. and Hejnar, J. (2012). Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. Journal of Virology, 86(4): 2021–2030.

Roberts, E. and Card, L.E. (1935). Inheritance of resistance to bacterial infection in animals: a genetic study of pullorum disease. Bull – University of Illinois Agriculture Experiment Station. No. 419.

Sartika, T., Sulandari, S. and Zein, M.S.A. (2011). Selection of Mx gene genotype as genetic marker for Avian Influenza resistance in Indonesian native chicken. BMC Proceedings. 5 (4): S37. doi: 10.1186/1753-6561-5-S4-S37.

Schierman, L.W. and Nordskog, A.W. (1961). Relationship of blood type to histocompatibility in chickens. Science, 134: 1008-1009.

Singh, A., Gupta, J., Churchil, R.R., Sharma, D. and Singh R.V. (2007). Genetic diversity between Red Jungle Fowl and domestic chicken for BLB2 region. Journal of Applied Animal Research, 31(1): 69-72.

Singh, A., Gupta, J., Sharma, D., Singh, R.V. and Churchil, R.R. (2005). Genetic relatedness between Red Jungle fowl and other poultry species for BLB2 gene. Indian Journal of Animal Genetics and Breeding, 26(1, 2): 18- 20.

Sironi, L., Williams, J.L., Moreno-Martin, A.M., Ramelli, P., Stella, A., Jianlin, H., Weigend, S., Lombardi, G., Cordioli, P. and Mariani, P. (2008). Susceptibility of different chicken lines to H7N1 highly pathogenic avian influenza virus and the role of Mx gene polymorphism coding amino acid position 631. Virology, 380: 152–156.

Smith, J., Speed, D., Law, A.S., Glass, E.J. and Burt, D.W. (2004). Insilico identification of chicken immune related genes. Immunogenetics, 56: 122–133.

Staeheli, P., Puehler, F., Schneider, K., Göbel, T.W. and Kaspers, B. (2001). Cytokines of birds: Conserved functions - a largely different look. Journal of Interferon and Cytokine Research, 21: 993–1010.

Von Krosigk, C. M., McClary, L. F., Vielitz, E., Zander, D.V., Friars, G.W., Chambers, J.R., Kennedy, A. and Smith, A.D. (1972). Selection for resistance to Marek's disease in conjunction with other economic traits in chickens. Avian Diseases, 16: 2-10.

Wong, G.K., Liu B., Wang, J., Zhang, Y., Yang, X., Zhang, Z., Meng, Q., Zhou, J., Li, D., Zhang, J. and Ni, P. (2004). A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms, Nature, 432: 717-722.

Xu, L., He, Y., Ding, Y., Zhang, H., Cheng, H.H., Taylor Jr., R.L. and Song, J. (2018). Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease. Journal of Animal Science and Biotechnology, 9: 65.

Zhou, H. (2023). Project Report on Genetic bases for resistance and immunity to avian diseases. University of California, Davis. https: //portal. nifa. usda. gov/ web /crisprojectpages/1018147- genetic-bases-for-resistance -and-immunity-to-avian-diseases. html.

Downloads

Submitted

15-06-2023

Published

30-06-2023

How to Cite

R. Richard Churchil. (2023). GENETICS, GENOMICS AND BREEDING FOR DISEASE RESISTANCE IN POULTRY . Indian Journal of Veterinary and Animal Sciences Research, 52(2), 1-17. https://epubs.icar.org.in/index.php/IJVASR/article/view/137819