METHANE EMISSION FROM RUMINANTS AND UTILITY OF PLANT EXTRACTS IN REDUCTION OF METHANOGENESIS
24 / 11
Keywords:
Methanogenesis, methane, plant extractsAbstract
Methane (CH4) is second major gas after carbon dioxide (CO2) responsible for the warming of environment and ozone layer depletion. Although CH4 production is necessary for efficient digestion, it represents an energetic loss of up to 12% of the gross energy intake in ruminants. Methane is produced by strict anaerobes belonging to the sub-group of the Archaea domain. The past decade has shown a lot of interest in the use of plant extracts to mitigate methane production in ruminants. Addition of plant essential oils, can limit the growth of the micro-organisms participating in methane formation in the rumen, thus resulting in the reduction of its production. Reduction of methane production in the rumen ecosystem is possible to achieve with the use of plantsaponins. Tannins have been found to be toxic for many of the rumen microbes, especially ciliate protozoa, fibre degrading microbes and methanogenic bacteria as a result of this methanogenesis in the rumen is reduced.
Downloads
References
Agarwal, N., Shekhar, C., Kumar, R., Chaudhary, L.C. andKamra, D.N., (2009). Effect of peppermint (Menthapiperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology, 148: 321-327.
Aluwong, T.1, Wuyep, P. A. and Allam, L., (2011). African Journal of Biotechnology, 10 (8):1265-1269.
Asiegbu, F.O., Paterson, A., Morrison, I.M. and Smith, J.E., (1995). Effect of cell wall phenolics and fungal metabolites on methane and acetate production under in vitro conditions, Journal of General and Applied Microbiology, 41: 475–485.
Beauchemin, K.A, Kreuzer, M, O’Mara, F and McAllister, T.A.(2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48: 21-27.
Beauchemin,K. A., McGinn, S. M., Martinez, T. F. and McAllister , T. A.,(2007). Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle, Journal of Animal Science, 85 (8): 1990–1996.
Beauchemin, K., (2014). New Perspectives on reducing methane emission from beef and dairy production. Proceedings of Eastern Nutrition Conference, May, 2014.
Broudiscou, L.P., Papon, Y. and Broudiscou, A.F.,(2002). Effects of dry plant extracts on feed degradation and the production of rumen microbial mass in a dual flow fermenter. Animal Feed Science and Technology, 101:183–189.
Busquet, M., Calsamiglia, S., Ferret, A.,Carro, M.D. and Kamel, C., (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation, Journal of Dairy Science, 88 : 4393-4404
Carulla, J. E., Kreuzer, M., Machmüller, A. and Hess, H. D., (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep, Australian Journal of Agricultural Research, 56 (9): 961–970.
Castillejos, L., Calsamiglia, S., Ferret, A. and Losa, R. (2005). Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Animal Feed Science and Technology, 119: 29–41.
Cieœlak A., Zmora P., Nowakowska A. and Szumacher-Strabel, M., (2009). Limonene affect rumen methanogenesis. Acta Biochemistry. 56(2): 59-60.
Crane A., Nelson W.O. and Brown R.E., (1957). Effects of D-limonene and aD-pinene on in vitro carbohydrate dissimilation and methane formation by rumen bacteria. Journal of Dairy Science. 40:1317-1323.
Evans J.D. and Martin S.A., (2000). Effects of thymol on ruminal microorganisms. Current. Microbiology. 41: 336-340.
Garc´la-Gonz´alez, R.,L´opez. S ,Fern´andez. M., Bodas. R. and Gonz´alez, J.Z.,(2008). Screening the activity of plants and spices for decreasing ruminal methane production in vitro, Animal Feed Science and Technology, 147: 36-52.
Goel, G., Makkar,H.P.S. and Becker, K., (2008). Changes in microbial community, structure, methanogenesis and rumen
fermentation in response to saponinrich fractions from different plant materials. Journal of Applied Microbiology. 105: 770-777.
Guo, Y.Q., Liu, J.X., Lu, Y., Zhu ,W.Y., Denman, S.E. and McSweeney, C.S. (2008). Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen microorganisms Letters of Applied. Microbiology. 47 : 421-426.
Hart, K.J., Girdwood,S.E, Taylor, S., YanezRuiz, D.R. and Newbold, C.J.,(2006). Effect of allicin on fermentation and microbial populations in the rumen simulating fermentor Rusitec. Reproduction Nutrition Development, 46 (1): S97.
Hess, H.D., Kreuzer, M., Diaz ,T.E., Lascano, C.E., Carulla, J.E., Soliva, C.R. and Machmûller, A. (2003). Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology. 109: 79-94.
Hobson, P.N., (1969). Rumen bacteria. In: J.R. Norris, D.W. Ribbons (Editors). Methods in Microbiology, Vol. 3B. Academic Press Ltd., London, 133-149.
IPCC AR4 WG3 (2007). Metz, B., Davidson, O.R., Bosch, P.R., Dave, R. and Meyer, L.A., ed., Climate Change 2007: Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK.
Jarvis, G. N., Strömpl, C., Burgess, D. M., Skillman, L. C., Moore, E. R. B. and Joblin K. N. (2000). Isolation and identification of ruminal methanogens from grazing cattle, ”Current Microbiology. 40 (5): 327–332.
Johnson, K.A., Johnson, D.E. (1995). Methane emissions from cattle, Journal of Animal Science 73 : 2483–2492.
Kamra, D.N., Agarwal, N. and Chaudhary, L.C.,(2005). Inhibition of ruminal methanogenesis by tropical plants containing secondary plant compounds. In: Soliva, C.R., Takahashi, J. and Kreuzer,M. (Eds.), Proceedings of the 2nd International Conference of Greenhouse Gases and Animal Agriculture. ETH Zurich, Zurich, Switzerland, pp.102–111.
Kamra, D. N. (2006). Manipulation of rumen microbial ecosystem to reduce Methanogenesis and optimize feed utilization. XII Animal Nutrition Conf. 7-9 Jan 2006. AAU.,Anand, Gujrat.
Kamra. D.N, Patra. A.K, Chatterjee, P.N., Ravindra. K, Neeta, A. and Chaudhary, L.C. (2008). Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Australian Journal of Experimenta Agriculture. 48: 175-178.
Kumar, V., Mayank Tandon and Verma, M.P. (2008). Environment friendly dairy farming: Nutritional Techniques for Mitigating Methane Production from Ruminants, Dairy Planner, 4(11): 12-14.
Macheboeuf, D., Morgavi, D.P. Papon, Y., MoussetJ. L. and Arturo-Schaan, M. (2008). Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology. 145: 335-350.
McCrabb, G.J. and Hunter, R.A. (1999). Prediction of methane emissions from beef cattle in tropical production systems, Australian Journal Agricultural Research, 50: 1335–1339.
McIntosh, F. M., Williams, P. Losa, R. Wallace, R. J..Beever, D. A. and Newbold. C. J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied Environmental Microbiology, 69 : 5011–5014.
McMichael, A. J., Powles, J. W., Butler, C. D., and Uauy, R., (2007). Food, livestock production, energy, climate change, and health, The Lancet. 370 (9594) 1253–1263.
Mao, H.L., Wang, J.K., Zhou, Y.Y.and Liu, J.X., (2010). Effects of addition of tea saponins and soyabean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science. 129 : 56-62.
Moss, A.R., J. Jouany, J. and Newbold, (2000). Methane production by ruminants: its contribution to global warming. Annales de Zootechnie, 49: 231–253.
Newbold, C.J., Wallace, R.J., Watt, N.D. and Richardson, A.J.(1988). The effect of the novel ionophoretetronasin (ICI 139603) on ruminal microorganisms. Applied Environmental Microbiology. 54 : 544-547.
Oliveira, S. G. , De, Berchielli,T. T., Pedreira, M. D. S., Primavesi O., Frighetto, R. and Lima M. A., (2007). Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle, Animal Feed Science and Technology. 135(3-4): 236–248.
Patra, A.K., Kamra, D.N. and Agarwal, N.(2006). Effect of plant extract on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal. Feed Science and Technology, 128: 276–291.
Pen, B., Sar, C. Mwenya, B., Kuwaki, M. Morikawa, R. and Takahashi, J. (2006). Effects of Yucca schidigera and Quill ajasaponaria extracts on in vitro ruminal fermentation and methane emission. Animal Feed Science and Technology, (129)175–186.
Puchala, R., Min, B. R., Goetsch, A. L. and Sahlu, T., (2005). The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, 83 ( 1): 182–186.
Ramirez-Restrepo, C. A. and Barry, T (2005). Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants Animal Feed Science and Technology, 120 (3-4): 179-201
Singh, G.P., Nagpal, A.K. and Sainj, N., (2005). Methane production in relation to productivity of livestock and environment: a review. Indian Journal of Animal Science, 75: 143–148.
Œliwiñski, B.J., Soliva, C.R. and Machmüller, A., (2002). Efficacy of plant rich in secondary constituents to modify rumen fermentation. Animal Feed Science and Technology, 101:101-114.
Steudler P.A., Bowden, R.D. Melillo, J.M. and Aber, J.D.(1989). Influence of nitrogen fertilisation on methane uptake in temperate soils, Nature, 341: 314-316.
Stewart, C..S., Flint, H..J. and Bryant, M.P. (1997). The rumen bacteria. In: Hobson, P.N., Stewart, C.S. (Eds.), The rumen microbial ecosystem. Blackie Academic & Professional, London, pp. 21–72.
Takahashi, J., Mwenya, B, Santoso, B, Sar, C., Umetsu, K., Kishimoto, T., Nishizaki, K. Kimura1,K. and Hamamoto, O., (2005). Asian-Australian Journal of Animal Sciences, 18 (8) : 1199-1208.
Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker ,N., Attwood, G. T., and Sivakumaran, S., (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis, Animal Feed Science and Technology, 123-124: 403–419.
Tiemann, T. T., Lascano, C. E., Wettstein, H. R., Mayer, A. C., Kreuzer, M. and Hess, H.D. (2008). Effect of the tropical tannin-rich shrub legumes Calliandracalothyrsus and Flemingiamacrophylla on methane emission and nitrogen and energy balance in growing lambs. 2(5): 790–799.
Wallace, R. J., (2004). Antimicrobial properties of plant secondary metabolites. Proceedings of Nutrition Society, B 621–629.
Wang, C.J., Wang, S.P. and Zhou, H. (2009). Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Animal Feed Science and Technology. 148:157-166.
Whitford, M. F., Teather, R. M., and Forster, R. J., (2001). Phylogenetic analysis of methanogens from the bovine rumen, BMC Microbiology, 1: 1–5.
Wina, E., Muetzel, S., Hoffmann, E., Makkar, H.P.S. and Becker, K., (2005). Saponins containing methanol extract of Sapindusrarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology. 121: 159-174.
Wood, T.A, Wallace, R.J, Rowe, A, Price, J, Yanez-Ruize, D.R, Murray, P. and Newbold, C.J., (2009). Encapsulated fumaric acid as feed ingredients to decrease ruminal methane emissions. Journal of Animal. Feed Science and Technology. 152: 62-71.
Downloads
Submitted
Published
Issue
Section
License
All the copy right belongs to the sponsoring Organization, Tamil Nadu Veterinary and Animal Sciences University, Chennai - 51.