Effect of Organophosphate, Monocrotophos on Behavioural, Haematological, Histological and Biochemical Indices in the Subtropical Catfish Heteropneustes fossilis (Bloch, 1794)

Authors

  • S.T. PATTNAIK Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • SURYASIKHA SAMAL Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • C.S.K. MISHRA Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • PULAK GHOSH Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • NISHIGANDHA MUDULI Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • MANISHA BISWAL Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • PRATIK ACHARYA Department of Zoology, Odisha University of Agriculture & Technology Bhubaneswar - 751003, Odisha, India
  • RAMJANUL HAQUE ICAR-Central Institute of Fisheries Education, Versova Mumbai - 400 061, Maharashtra, India
  • RAJESH KUMAR ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga Bhubaneswar - 751 002, Odisha, India
  • JITENDRA KUMAR SUNDARAY ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga Bhubaneswar - 751 002, Odisha, India

DOI:

https://doi.org/10.54894/JISCAR.40.1.2022.119253

Abstract

A study was conducted to evaluate the impact of acute sub-lethal toxicity of monocrotophos on behavioural, biochemical, haematological and histopathological changes in Heteropneustes fossilis (49.53±0.71 g). Probit analysis showed the 96 h LC50 of monocrotophos for H. fossilis was 20 ppm. Followed by the LC50 value, sub-lethal concentrations for acute exposure of monocrotophos were 3 ppm in T1, 6 ppm in T2 and 8 ppm in T3 for 72 h of the experimental period. The behavioural responses observed in treated fish were: erratic movement, imbalance in swimming, surfacing, and hyperactivities. A gradual reduction in total RBC count, haemoglobin, monocyte, and basophil contents were observed with an increased concentration of monocrotophos. On other hand, the total WBC count, neutrophil, basophil and blood ESR showed reversed trend (p<0.05). Total tissue protein content of gill, liver and kidney was altered and decreased significantly (p<0.05) in monocrotophos-treated fish. Tissue lipid peroxidation (LPO) and catalase activities in gill, liver and kidney were also altered after 24 h, 72 h and followed an increasing trend in exposed fish which differed significantly (p<0.05) from the control group. Compared to the control, significant changes were observed in the histopathological architecture of blood cells and gill tissue. The overall result showed that exposure to monocrotophos severely affects fish behaviour and physiology. Therefore the misuse of the chemical may be avoided to reduce the negative impact on aquatic animals.

Downloads

Download data is not yet available.

References

Adedeji, O.B., Adeyemo, O.K. and Agbede, S.A. (2009). Effects of diazinon on blood parameters in the African catfish (Clarias gariepinus). African Journal of Biotechnology 8(16): 3940-3946. https://doi.org/10.5897/AJB09.158

Agrahari, S., Pandey, K.C. and Gopal, K. (2006). Effect of monocrotophos on erythropoietic activity and hematological parameters of the freshwater fish Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology 76(4): 607-613. https://doi.org/10.1007/s00128-006-0963-5

Alok, D., Krishnan, T., Talwar, G.P. and Garg, L.C. (1993). Induced spawning of catfish, Heteropneustes fossilis (Bloch), using D-Lys6 salmon gonadotropin-releasing hormone analog. Aquaculture 115: 159-167.

Andersson, B.S., Aw, T.Y. and Jones, D.P. (1987). Mitochondrial transmembrane potential and pH gradient during anoxia. American Journal of Physiology-Cell Physiology 252(4): C349-C355. https://doi.org/10.1152/ajpcell.1987.252.4.C349

Ansari, S. and Ansari, B.A. (2014). Temporal variations of CAT, GSH, and LPO in gills and livers of zebrafish, Danio rerio, exposed to dimethoate. Fisheries & Aquatic Life 22(2): 101-109. https://doi.org/10.2478/aopf-2014-0009

APHA. (2005). Standard Methods of Examination of Water and Wastewater, Twenty first edition, APHA (American Public Health Association), Washington, DC, USA.

Bainy, A.C.D., Saito, E., Carvalho, P.S.M. and Junqueira, V.B.C. (1996). Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology 34(2): 151-162. https://doi.org/10.1016/0166-445X(95)00036-4

Blahova, J., Modra, H., Sevcikova, M., Marsalek, P., Zelnickova, L., Skoric, M. and Svobodova, Z. (2014). Evaluation of Biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinus carpio L.) after acute exposure to atrazine herbicide. BioMed Research International 2014:e980948. https://doi.org/10.1155/2014/980948

Clasen, B., Loro, V.L., Murussi, C.R., Tiecher, T.L., Moraes, B. and Zanella, R. (2018). Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of The Total Environment 626: 737-743. https://doi.org/10.1016/j.scitotenv.2018.01.154

Cohen, G., Dembiec, D. and Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Analytical Biochemistry, 34(1) 30-38. https://doi.org/10.1016/0003-2697(70)90083-7

Das, B.K. and Mukherjee, S.C. (2003). Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 134(1): 109-121. https://doi.org/10.1016/S1532-0456(02)00219-3

Deoi, G., Baruah, B.K. and Das, M. (2004). Study on the effect of paper mill effluent on haematological profile of Heteropeustes fossilis (Bloch). Pollution Research 23(4): 611-614.

Devi, Y. and Mishra, A. (2013). Histopathological alterations in gill and liver anatomy of fresh water, air breathing fish Channa Punctatus after pesticide hilban® (chlorpyrifos) treatment. Advances in Bio Research 4(2): 57-62.

Doherty, V.F., Ladipo, M.K., Aneyo, I.A., Adeola, A. and Odulele, W.Y. (2016). Histopathological alterations, biochemical responses and acetylcholinesterase levels in Clarias gariepinus as biomarkers of exposure to organophosphates pesticides. Environmental Monitoring and Assessment 188(5): 312. https://doi.org/10.1007/s10661-016-5299-y

El-Naggar, A.M., Mahmoud, S.A. and Tayel, S.I. (2009). Bioaccumulation of some heavy metals and histopathological alterations in liver of Oreochromis niloticus in relation to water quality at different localities along the River Nile, Egypt. World Journal of Fish and Marine Sciences 1(2): 105-114.

EPA. (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth edition, U.S. Environmental Protection Agency (Environmental Protection Agency), NW, Washington, DC, USA. 275 p.

Evans, B.J., Haskard, D.O., Finch, J.R., Hambleton, I.R., Landis, R.C. and Taylor, K.M. (2008). The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo. The Journal of Thoracic and Cardiovascular Surgery 135(5): 999-1006. https://doi.org/10.1016/j.jtcvs.2007.08.071

Finney, D.J. (1971). Probit Analysis, Third edition. Cambridge University Press, New York, USA. 333 p.

Ghasemzadeh, J., Sinaei, M. and Bolouki, M. (2015). Biochemical and histological changes in fish, spotted scat (Scatophagus argus) exposed to diazinon. Bulletin of Environmental Contamination and Toxicology 94(2): 164-170. https://doi.org/10.1007/s00128-014-1454-8

Haque, R., Sawant, P.B., Sardar, P., Xavier, K.A.M., Varghese, T., Chadha, N.K., Pattanaik, S. S., Jana, P. and Naik, V.A. (2021). Synergistic utilization of shrimp shell waste-derived natural astaxanthin with its commercial variant boosts physio metabolic responses and enhances colouration in discus (Symphysodon aequifasciatus). Environmental Nanotechnology, Monitoring and Management 15: 100405. https://doi.org/10.1016/j.enmm.2020.100405

Hedayati, A. and Niazie, E.H.N. (2015). Hematological changes of silver carp (Hypophthalmichthys molitrix) in response to diazinon pesticide. Journal of Environmental Health Science and Engineering 13: 52 https://link.springer.com/article/10.1186/s40201-015-0208-9

Hincal, F., Gürbay, A. and Giray, B. (1995). Induction of lipid peroxidation and alteration of glutathione redox status by endosulfan. Biological Trace Element Research 47(1): 321-326. https://doi.org/10.1007/BF02790133

Jacquin, L., Gandar, A., Aguirre-Smith, M., Perrault, A., Hénaff, M.L., Jong, L.D., Paris-Palacios, S., Laffaille, P.and Jean, S. (2019). High temperature aggravates the effects of pesticides in goldfish. Ecotoxicology and Environmental Safety 172: 255-264. https://doi.org/10.1016/j.ecoenv.2019.01.085

Jaffer, N.S., Rabee, A.M. and Al-Chalabi, S.M.M. (2017). Biochemical and hematological parameters and histological alterations in fish Cyprinus carpio L. as biomarkers for water pollution with chlorpyrifos: Human and Ecological Risk Assessment: An International Journal 23(3): 605-616. https://doi.org/10.1080/10807039.2016.1261626

Jana, P., Sahu, N.P., Dasgupta, S., Gupta, G., Ray, S.K., Mahapatra, B.K. and Pailan, G.H. (2021). Dietary neem oil and nonylphenol accelerate somatic growth by suppressing sex steroids mediated gonadal growth in reproductively active Labeo bata (Hamilton, 1822). Aquaculture Research. 52(11): 5247-5259. https://doi.org/10.1111/are.15393

Jyothirmayee, S., Janetheophillus, P.B. and Narender, T.R. and Reddy, P.U.M. (2016). Endosulfan induced changes in esterases of Anabas testudineus and Clarias batrachus. Indian Journal Comparative Animal Physiology 24(1): 95-99.

Kappus, H. and Mahmutoglu, I. (1987). Redox cycling of bleomycin-Fe(III) by an NADH-dependent enzyme, and DNA damage in isolated rat liver nuclei. Biochemical Pharmacology 36(21): 3677-3681. https://doi.org/10.1016/0006-2952(87)90019-0

Karmakar, S., Karmakar, S., Jana, P., Chhaba, B., Das, S.A. and Rout, S.K. (2021). Nonylphenol exposure in Labeo rohita (Ham.): Evaluation of behavioural response, histological, haematological and enzymatic alterations. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 247: 109058. https://doi.org/10.1016/j.cbpc.2021.109058

Karmakar, S., Patra, K., Jana, S., Mandal, D.P. and Bhattacharjee, S. (2016). Exposure to environmentally relevant concentrations of malathion induces significant cellular, biochemical and histological alterations in Labeo rohita. Pesticide Biochemistry and Physiology 126: 49-57. https://doi.org/10.1016/j.pestbp.2015.07.006

Katuli, K. K., Amiri, B.M., Massarsky, A. and Yelghi, S. (2014). Impact of a short-term diazinon exposure on the osmoregulation potentiality of Caspian roach (Rutilus rutilus) fingerlings. Chemosphere 108: 396-404. https://doi.org/10.1016/j.chemosphere.2014.02.038

Kaur, K. and Kaur, A. (2015). Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, basic violet-1 (CI: 42535). Microscopy and Microanalysis 21(1): 264-273. https://doi.org/10.1017/S1431927614013609

Kaur, K. and Kaur, R. (2018). Occupational pesticide exposure, impaired DNA repair, and diseases. Indian Journal of Occupational and Environmental Medicine 22(2): 74-81. https://doi.org/10.4103/ijoem.IJOEM_45_18

Keramati, V., Jamili, S. and Ramin, M. (2010). Effect of diazinon on catalase antioxidant enzyme activity in liver tissue of Rutilus rutilus. Journal of Fisheries and Aquatic Science 5(5): 368-376. https://aquadocs.org/handle/1834/14189

Kumar, R., Mukherjee, S.C., Ranjan, R. and Nayak, S.K. (2008). Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish & Shellfish Immunology 24(2): 168-172. https://doi.org/10.1016/j.fsi.2007.10.008

Lakshmaiah, G. (2016). A histopathological study on the liver of common carp Cyprinus carpio exposed to sublethal concentrations of phorate. International Journal of Applied Research 2(6): 96-100.

Lance, V.A. and Elsey, R.M. (1999). Hormonal and metabolic responses of juvenile alligators to cold shock. Journal of Experimental Zoology 283(6): 566-572. https://doi.org/10.1002/(SICI)1097-010X(19990501)283:6<566::AID-JEZ8>3.0.CO;2-9

Loganathan, K., Velmurugan, B., Howrelia, J.H., Selvanayagam, M. and Patnaik, B.B. (2006). Zinc induced histological changes in brain and liver of Labeo rohita (Ham.). Journal of Environmental Biology 27(1): 107-110.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193(1): 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Maharajan, A. and Parurukmani, P.S. (2012). Effect of aluminium chloride toxicity against histopathology of gill and liver tissue of Indian major carp, Catla Catla (Hamilton). International Journal of Pharma and Bio Sciences 3(3): 523-530.

Maiti, S., Saha, S., Jana, P., Chowdhury, A., Khatua, S. and Ghosh, T.K. (2021). Effect of dietary Andrographis paniculata leaf extract on growth, immunity, and disease resistance against Aeromonas hydrophila in Pangasianodon hypopthalmus. Journal of Applied Aquaculture https://doi.org/10.1080/10454438.2021.1959861

Massar, B., Dey, S., Barua, R. and Dutta, K. (2012). Microscopy and microanalysis of hematological parameters in common carp, Cyprinus carpio, inhabiting a polluted lake in North East India. Microscopy and Microanalysis 18(5): 1077-1087. https://doi.org/10.1017/S1431927612001432

Mishra, A., Pandey, M. and Tripathi, B.D. (2017). Assessment of the bioaccumulation of selected metals in Channa punctatus and Rita rita and exposure evaluation in humans. Regional Studies in Marine Science 11: 1-8. https://doi.org/10.1016/j.rsma.2017.01.009

Mohapatra, S., Kumar, R., Sundaray, J.K., Patnaik, S.T., Mishra, C.S.K. and Rather, M.A. (2021). Structural damage in liver, gonads, and reduction in spawning performance and alteration in the haematological parameter of Anabas testudineus by glyphosate- a herbicide. Aquaculture Research 52(3): 1150-1159. https://doi.org/10.1111/are.14973

Moraes, B.S., Loro, V.L., Glusczak, L., Pretto, A., Menezes, C., Marchezan, E. and de Oliveira M.S. (2007). Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere 68(8): 1597-1601. https://doi.org/10.1016/j.chemosphere.2007.03.006

Nagaraju, B. and Rathnamma, V. (2013). Effect of profenofos an organophosphate on protein levels in some tissues of fresh water fish Labeo rohita (Hamilton). International Journal of Pharmacy and Pharmaceutical Sciences 5(1): 276-279.

Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-3

Ortiz-Ordoñez, E., Uría-Galicia, E., Arturo Ruiz-Picos, R. and López-López, E. (2011). Effect of yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Archives of Environmental Contamination and Toxicology 61: 443-452. https://doi.org/10.1007/s00244-011-9648-0

Özaslan, M.S., Demir, Y., Aksoy, M. and Beydemir, Ş. (2018). Inhibition effects of pesticides on glutathione‐S‐transferase enzyme activity of Van Lake fish liver. Journal of Biochemical and Molecular Toxicology 32(9): e22196. https://doi.org/10.1002/jbt.22196

Pereira, L., Fernandes, M.N. and Martinez, C.B.R. (2013). Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environmental Toxicology and Pharmacology 36(1): 1-8. https://doi.org/10.1016/j.etap.2013.02.019

Rahman, M.S., Reichelt-Brushet, A.J. and Clark, M.W. (2017). Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk. Science of The Total Environment 581-582: 782-793. https://doi.org/10.1016/j.scitotenv.2017.01.009

Reddy, C.N. and Rao, V.J. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety 71(2): 574-582.

Roberts, R.J. (2012). Fish Pathology. John Wiley & Sons, New Delhi, India.

Robinson, P.D. (2009). Behavioural toxicity of organic chemical contaminants in fish: Application to ecological risk assessments (ERAs). Canadian Journal of Fisheries and Aquatic Sciences 66(7): https://doi.org/10.1139/F09-06

Rohankar, P., Zade, V., Dabhadkar, D. and Labhsetwar, N. (2012). Evaluation of impact of phosphamidon on protein status of freshwater fish Channa punctatus. Indian Journal of Scientific Research 3(1): 123-126.

Rosety-Rodrı́guez, M., Ordoñez, F.J., Rosety, M., Rosety, J.M., Rosety, I., Ribelles, A. and Carrasco, C. (2002). Morpho-histochemical changes in the gills of turbot, Scophthalmus maximus L., induced by sodium dodecyl sulfate. Ecotoxicology and Environmental Safety 51(3): 223-228. https://doi.org/10.1006/eesa.2001.2148

Sadiqul, I.M., Ferdous, Z., Nannu, Md.T.A., Mostakim, G.M. and Rahman, Md.K. (2016). Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environmental Pollution 219: 949-956. https://doi.org/10.1016/j.envpol.2016.09.066

Saha, K.C. and Guha B.C. (1939). Nutritional investigation of Bengal fish. The Indian Journal of Medical Research 26: 921-927.

Sarma, K., Pal, A.K., Sahu, N.P., Dalvi, R.S., Chatterjee, N., Mukherjee, S.C. and Baruah, K. (2012). Acute and chronic effects of endosulfan on the haemato-immunological and histopathological responses of a threatened freshwater fish, spotted murrel, Channa punctatus. Fish Physiology and Biochemistry 38: 499-509. https://doi.org/10.1007/s10695-011-9530-z

Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R. and Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety 56(2): 295-301. https://doi.org/10.1016/S0147-6513(03)00009-5

Sinton, J.R. (1948). Clinical value of erythrocyte sedimentation rate. British Medical Journal 1(4547): 391-393.

Svoboda, M., Lusková, V., Drastichová, J. and Žlábek, V. (2001). The effect of diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 70(4): 457-465. https://doi.org/10.2754/avb200170040457

Tamizhazhagan, V. and Pugazhendy, K. (2016). The toxicity effect of Monocrotophos 36% EC on the Biochemical changes Labeo rohita (Hamilton, 1882). International Journal for Scientific Research and Development 3(11): 802-808.

Tilak, K.S. and Yacobu, K. (2002). Toxicity and effect of fenvalerate on fish Ctenopharyngodon idella. Journal of Ecotoxicology and Environmental Monitoring 12(1): 9-15.

Tripathi, G. and Singh, H. (2013). Impact of alphamethrin on biochemical parameters of Channa punctatus. Journal of Environmental Biology 34(2): 227-230

Ullah, S., Zuberi, A., Alagawany, M., Farag, M.R., Dadar, M., Karthik, K., Tiwari, R., Dhama, K. and Iqbal, H.M.N. (2018). Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. Journal of Environmental Management 206: 863-871. https://doi.org/10.1016/j.jenvman.2017.11.076

van der Oost, R., Beyer, J. and Vermeulen, N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology 13(2): 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6

Vani, T., Saharan, N., Mukherjee, S.C., Ranjan, R., Kumar, R. and Brahmchari, R.K. (2011). Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pesticide Biochemistry and Physiology 101(1): 16-20. https://doi.org/10.1016/j.pestbp.2011.05.007

Vasylkiv, O.Y., Kubrak, O.I., Storey, K.B. and Lushchak, V.I. (2011). Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochemistry and Physiology 101(1): 1-5. https://doi.org/10.1016/j.pestbp.2011.05.005

Velmurugan, B., Selvanayagam, M., Cengiz, E.I. and Unlu, E. (2007). The effects of monocrotophos to different tissues of freshwater fish Cirrhinus mrigala. Bulletin of Environmental Contamination and Toxicology 78(6): 450-454. https://doi.org/10.1007/s00128-007-9190-y

Wintrobe, M.M. (1967). Clinical Hematology. Lea and Febiger, Philadelphia, USA.

Zahran, E., Risha, E., Awadin, W. and Palić, D. (2018). Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). Aquatic Toxicology 197: 47-59. https://doi.org/10.1016/j.aquatox.2018.02.001

Downloads

Published

2022-07-23

How to Cite

PATTNAIK, S., SAMAL, S., MISHRA, C., GHOSH, P., MUDULI, N., BISWAL, M., ACHARYA, P., HAQUE, R., KUMAR, R., & SUNDARAY, J. K. (2022). Effect of Organophosphate, Monocrotophos on Behavioural, Haematological, Histological and Biochemical Indices in the Subtropical Catfish Heteropneustes fossilis (Bloch, 1794). Journal of the Indian Society of Coastal Agricultural Research, 40(1). https://doi.org/10.54894/JISCAR.40.1.2022.119253

Issue

Section

Articles