Performance of MODIS-Landsat Blending of Vegetation Indices in the Coastal Zone of Ganges Delta


Abstract views: 52 / PDF downloads: 55

Authors

  • J.L. PEÑA-ARANCIBIA Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT - 2601, Australia
  • Y. YU Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT - 2601, Australia

https://doi.org/10.54894/JISCAR.42.1.2024.147381

Keywords:

Image processing, Monitoring, Remote sensing, Vegetation indices, Satellites

Abstract

Blending of temporal high-frequency-low-spatial resolution MODIS with temporal low-frequency-high-spatial resolution Landsat satellite imagery enhances the frequency and resolution of spatial data, thus enabling continuous monitoring of dynamic and rapidly changing environmental conditions. Blending can be particularly useful in areas with high cloud cover, such as during the monsoon season in the coastal zone of the Ganges Brahmaputra Delta (CZGBD). In this study, MODIS-Landsat blending of reflectance-derived remote sensing indices is trialled and evaluated in the CZGBD. The Sub-pixel class fraction change information Flexible Spatiotemporal DAta Fusion (SFSDAF) algorithm is used to obtain gap free 30 m and 16-day frequency vegetation, salinity and water indices for the entire CZGBD. Pixels obtained through blending were compared to the observed pixels (i.e., not contaminated by clouds to evaluate the accuracy of SFSDAF). Results during the ‘dry’ months (October to March) had a combined mean coefficient of determination, R2 = 0.65 and mean root squared error, RMSE = 0.09 for vegetation indices, whereas the results during the ‘wet’ months (April to September) had a combined mean R2 = 0.33 and mean RMSE = 0.12. The reduced accuracy of the blending during the monsoon months showcases the effects of cloudy conditions. Results for salinity and water indices showed similar behaviour as the vegetation indices, influenced by the cloudy monsoon season. The main cause of low accuracy during the ‘wet’ months is the paucity of data to perform the blending, even at the daily MODIS frequency. In addition, remote sensing indices with equations that normalised the range (generally between -1 and 1) had better results when compared to remote sensing indices that had less constrained ranges.

Downloads

Download data is not yet available.

References

Ceccato, P., Flasse, S. and Gregoire, J.M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data - Part 2. Validation and applications. Remote Sensing of Environment 82(2): 198-207. http://doi.org/10.1016/S0034-4257(02)00036-6.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P. (2012). Sentinel-2: ESA's optical high-resolution mission for gmes operational services. Remote Sensing of Environment 120: 25-36. http://doi.org/10.1016/j.rse.2011.11.026.

Feyisa, G.L., Meilby, H., Fensholt, R. and Proud, S.R. (2014). Automated Water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment 140: 23-35. http://doi.org/https://doi.org/10.1016/j.rse.2013.08.029.

Fisher, A., Flood, N. and Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment 175: 167-182. http://doi.org/10.1016/j.rse.2015.12.055.

Gao, F., Masek, J., Schwaller, M. and Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. Ieee Transactions on Geoscience and Remote Sensing 44(8): 2207-2218. http://doi.org/10.1109/Tgrs.2006.872081.

Ghosh, A., Nanda, M. K., Sarkar, D., Sarkar, S., Brahmachari, K. and Mainuddin, M. (2023). Kharif rice growth and area monitoring in Gosaba CD block of Indian Sundarbans region using multi-temporal dual-pol SAR data. Environment, Development and Sustainability. http://doi.org/10.1007/s10668-023-04138-4.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18-27. http://doi.org/10.1016/j.rse.2017.06.031.

Goward, S., Arvidson, T., Williams, D., Faundeen, J., Irons, J., and Franks, S. (2006). Historical record of Landsat global coverage: Mission operations, NSLRSDA, and international cooperator stations. Photogrammetric Engineering and Remote Sensing 72(10): 1155-1169. http://doi.org/10.14358/Pers.72.10.1155.

Hagenlocher, M., Renaud, F.G., Haas, S. and Sebesvari, Z. (2018). Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Science of the Total Environment 631-632: 71-80. http://doi.org/10.1016/j.scitotenv.2018.03.013.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1–2): 195-213. http://doi.org/10.1016/S0034-4257(02)00096-2.

Jarihani, A.A., McVicar, T.R., Van Niel, T.G., Emelyanova, I.V., Callow, J.N. and Johansen, K. (2014). Blending Landsat and MODIS Data to generate multispectral indices: A comparison of "Index-then-Blend" and "Blend-then-Index" approaches. Remote Sensing 6(10): 9213-9238. http://doi.org/10.3390/rs6109213.

Khan, N.M., Rastoskuev, V.V., Sato, Y. and Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management 77(1-3): 96-109.

Kriegler, F., Malila, W., Nalepka, R. and Richardson, W. (1969). Preprocessing transformations and their effect on multispectral recognition, Proceedings 6th International Symposium on Remote sensing of environment, University of Michigan, Ann Arbor, MI.USA. pp 97-131.

Li, X.D., Foody, G.M., Boyd, D.S., Ge, Y., Zhang, Y.H., Du, Y. and Ling, F. (2020). SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sensing of Environment 237. http://doi.org/10.1016/j.rse.2019.111537.

Mainuddin, M., Bell, R., Gaydon, D., Kirby, M., Barrett-Lennard, E., Glover, M., Akanda, M.A., Maji, B., Ali, A., Brahmachari, K., Maniruzzaman, M., Aziz, M.A., Burman, D., Biswas, J.C., Rahman, M.M. and Sarangi, S.K. (2019). An overview of the Ganges coastal zone: Climate, hydrology, land use, and vulnerability. Journal of the Indian Society of Coastal Agricultural Research 37(2): 1-11.

Mainuddin, M., Karim, F., Gaydon, D.S. and Kirby, J.M. (2021). Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Scientific Reports 11(1). http://doi.org/10.1038/s41598-021-86206-1.

Melchiorre, A., Boschetti, L. and Roy, D.P. (2020). Global evaluation of the suitability of MODIS-Terra detected cloud cover as a proxy for Landsat 7 cloud conditions. Remote Sensing 12(2). http://doi.org/10.3390/rs12020202.

Nanda, M.K., Ghosh, A., Sarkar, D., Sarkar, S., Brahmachari, K., Ray, K., Goswami, R. and Mainuddin, M. (2023). Assessing the seasonal crop acreage in the Ganges Delta using multi-temporal Sentinel-2 data: A Case study in Gosaba CD Block. Journal of the Indian Society of Coastal Agricultural Research 41(1): 24-40. http://doi.org/10.54894/JISCAR.41.1.2023.129996.

Nguyen, K.A., Liou, Y.A., Tran, H.P., Hoang, P.P. and Nguyen, T.H. (2020). Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Progress in Earth and Planetary Science 7(1): 1. http://doi.org/10.1186/s40645-019-0311-0.

Peña-Arancibia, J. L., Golam Mahboob, M., Islam, T., Mainuddin, M., Yu, Y., Ahmad, M.D., Ibn Murad, K., Saha, K., Hossain, A., Moniruzzaman, M., Ticehurst, C. and Kong, D.D. (2021). The green revolution from space: Mapping the historic dynamics of main rice types in one of the world’s food bowls. Remote Sensing Applications: Society and Environment 21: 100460. http://doi.org/10.1016/j.rsase.2020.100460.

Rahman, M.M., Haque, A., Nicholls, R.J., Darby, S.E., Urmi, M.T., Dustegir, M.M., Dunn, F.E., Tahsin, A., Razzaque, S., Horsburgh, K. and Haque, M.A. (2022). Sustainability of the coastal zone of the Ganges-Brahmaputra-Meghna delta under climatic and anthropogenic stresses. Science of the Total Environment 829. http://doi.org/10.1016/j.scitotenv.2022.154547.

Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S. and Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment 185: 57-70. http://doi.org/10.1016/j.rse.2015.12.024.

Shimu, S.A., Aktar, M., Ibn Afjal, M., Nitu, A.M., Uddin, M.P. and Al Mamun, M. (2019). NDVI Based change detection in Sundarban mangrove forest using remote sensing data, 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh. http://doi.org/10.1109/eict48899.2019.9068819.

Raut, S., Buddheswar, M., Subrata, M. and Lama, T. D. (2023). Study of vegetation index, land use and irrigation scheduling efficiency as affected by soil salinity in different blocks of coastal West Bengal using remote sensing and GIS. 33(2): 1–6.

Strahler, A.H., Lucht, W., Schaaf, C., Tsang, T., Gao, F., Li, X., Muller, J. P., Lewis, P. and Barnsley, M., (1999). MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0, 53 p. https://lpdaac.usgs.gov/documents/97/MCD43_ATBD.pdf, last access: October 2021.

Sunny, D.S., Islam, K.M.A., Mullick, M.R.A. and Ellis, J.T. (2022). Performance study of imageries from MODIS, Landsat 8 and Sentinel-2 on measuring shoreline change at regional scale. Remote Sensing Applications: Society and Environment 28. http://doi.org/10.1016/j.rsase.2022.100816.

Swapna, P., Sreeraj, P., Sandeep, N., Jyoti, J., Krishnan, R., Prajeesh, A.G., Ayantika, D.C. and Manmeet, S. (2022). Increasing Frequency of extremely severe cyclonic storms in the North Indian Ocean by anthropogenic warming and Southwest Monsoon Weakening. Geophysical Research Letters 49(3). http://doi.org/10.1029/2021GL094650.

Szabo, S., Brondizio, E., Renaud, F.G., Hetrick, S., Nicholls, R.J., Matthews, Z., Tessler, Z., Tejedor, A., Sebesvari, Z., Foufoula-Georgiou, E., da Costa, S. and Dearing, J.A. (2016). Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions. Sustainability Science 11(4): 539-554. http://doi.org/10.1007/s11625-016-0372-6.

Wang, G.J., Garcia, D., Liu, Y., de Jeu, R. and Dolman, A.J. (2012). A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environmental Modelling and Software 30: 139-142. http://doi.org/10.1016/j.envsoft.2011.10.015.

Welsch, C., Swenson, H., Cota, S. A., DeLuccia, F., Haas, J. M., Schueler, C., Durham, R. M., Clement, J. E. and Ardanuy, P. E. (2001). VIIRS (Visible Infrared Imager Radiometer Suite): A next-generation operational environmental sensor, Proceedings International Geoscience and Remote Sensing Symposium on Scanning the Present and Resolving the Future, Vols 1-7, July 9-13, 2001, University of New South Wales, Sydney, Ausralia. pp 1020-1022. https://ieeexplore.ieee.org/document/976733.

Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, E.A., Shaw, J., Masek, J.G. and Roy, D.P. (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment 185: 271-283. http://doi.org/10.1016/j.rse.2015.11.032.

Downloads

Submitted

2024-01-12

Published

2024-06-20

How to Cite

PEÑA-ARANCIBIA, J., & YU, Y. (2024). Performance of MODIS-Landsat Blending of Vegetation Indices in the Coastal Zone of Ganges Delta. Journal of the Indian Society of Coastal Agricultural Research, 42(1). https://doi.org/10.54894/JISCAR.42.1.2024.147381
Citation