Potential of Conservation Agricultural Practices on Soil Quality, Carbon Sequestration, Salinity Management and Productivity of Rainfed Areas
Conservation agricultural practices on soil quality
281 / 103
Keywords:
Conservation Agriculture, rainfed agriculture, zero tillageAbstract
Intensive cropping, traditional tillage practices, and crop residue removal are the major factors of soil organic carbon (SOC) depletion. Restoration of SOC levels would improve the soil’s aggregate ability, physical, chemical, and biological properties, low greenhouse gas emission, and environmental sustainability. The importance of rainfed farming in India is increasing continuously with the increasing demand for feed, fodder, and fiber. It is technologically estimated that at any point in time, 50% of cropped area in India will remain under the rainfed system. The major challenges in rainfed areas include water scarcity, climate variability, and the lack of suitable technologies and practices resulting in half of SOC being present in arid soils than in moist environments. That's why the carbon sequestration in these soils requires a wide range of management practices to restore SOC levels. Conservation agriculture (CA) practices such as minimum tillage (MT), reduced tillage (RT), and zero tillage (ZT) may help in carbon sequestration and restoring SOC levels. The results of different studies revealed that ZT, MT and RT recorded higher total organic carbon, microbial biomass carbon, and particulate organic carbon as compared with conventional tillage and these are now established methods for promoting carbon sequestration and reducing greenhouse gas emissions in soils. The continuous tillage practices are a major threat to soil health, productivity, and fertility in dry areas. The tillage technology showed direct and indirect benefits in resource-saving ability and carbon sequestration. Long-term conservation tillage, judicious nutrient, and residue management practices increase the SOC content and enhance soil aggregation, hydraulic conductivity, soil porosity, and moisture retention capacity. Generally, the soil quality index (SQI) is used as a quantitative parameter to measure the effect of crop management practices on soil health. In tropical areas, the changes in different tillage practices, input, and residue management technologies offer a conclusive statement regarding the feasibility and sustainability of CA cropping systems. The SQI indicators are highly location and purpose-specific, as directly correlated with an ecosystem, physical, chemical, and biological processes, crop management variations, and properties of soil. This review aims to highlight the impact of conservation tillage practices that have potential possibilities for carbon sequestration in soils including salt-affected soils of rainfed areas.
Downloads
References
Adebo, B. O., Aweto, A. O. and Ogedengbe, K. (2020). Assessment of Soil Quality under Different Agricultural Land Use Systems: A Case Study of the Ibadan Farm Settlement. Intern. J. Plant & Soil Sci. 32 (4). pp. 89-104. ISSN 2320-7035.
AGRA. 2024. Conservation Agriculture. https://agra.org/wp-content/uploads/IDSST/ethiopia/Conservation-agriculture-A1.pdf. AGRA, Growing Africa’s Agriculture. Assessed on 30/09/2024.
Ahmad, S., Li, C., Dai, G., Zhan, S., Wang, J., Pan, S. and Cao, C. (2009). Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Till. Res., 106 , pp. 54-61.
Álvaro-Fuentes, J., Arrúe, J.L., Gracia, R., López, M.V. Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions. Geoderma .145, Issues 3–4, 390-396.
Anonymous.(2022). https://agriwelfare.gov.in/en/RainfedDiv.
Ashagrie, Y., Zech, W. and Guggenberger, G. (2007). Soil aggregation,and total and particulate organic matter following con-version of native forests to continuous cultivation in Ethiopia. Soil Till. Res. 94:101–108.
Ashagrie, Y., Zech, W. Guggenberger, G. and Mamo, T. (2007). Soil aggregate and total and particulate organic matter following conversion of native forest to continuous cultivation in Ethiopia. Soil Tillage Res. 94 (1) 101-108
Basch, G., Carvalho, M., Barros, J. F. C., Calado, J. M. G. (2010). The importance of crop residue management for carbon sequestration under no-till. Congreso Europeo de Agricultura de Conservación Madrid, Octubre. 1-6. https://www.researchgate.net/publication/280560739.
Basso, B., Cammarano, D., Grace, P.R., Cafiero, G., Sartori, L., Pisante, M., Landi, G., De Franchi, S., Basso, F. (2009). Criteria for selecting optimal fertilizer rates for precision agriculture. Ital. J. Agron. 4. 147-158
Bekele, B., Habtemariam, T., Gemi, Y. (2022). Evaluation of Conservation Tillage Methods for Soil Moisture Conservation and Maize Grain Yield in Low Moisture Areas of SNNPR, Ethiopia. Water Con. Sci. and Eng. 7, 119–130.
Bhadur, D., Purakayastha, T. J., Patra, A. K. and Chakraborty, D. (2014). Evaluating soil quality under a long-term integrated tillage-water-nutrient experiment with intensive rice-wheat rotation in a semi-arid Inceptisol, India. Environ. Monit. Assess. 186, 2535-2547. doi: 10.1007/s10661-013-3558-8.
Biswas, S., Hazra, G. C., Purakayastha, T. J., Saha, N., Mitran, T., Roy, S. S., Basak, N., Mandal, B. (2017). Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma, 292, Pages 34-48.
Blanco-Canqui, H. and Lal, R. (2007). Regional assessment of soil compaction and structural properties under no-tillage farming. Soil Sci. Soc. Am. J., 71, 1770-1778.
Boomsma, C. R., Santini, J. B., West, T. D., Brewer, J. C., McIntyre, L. M., Vyn, T. J. (2010). Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil Till. Res. 106, 227-240.
Bosch-Serra, A. D., Yagüe, M. R. and Valdez, A. S. Domingo-Olivé, F. (2020). Dairy cattle slurry fertilization management in an intensive Mediterranean agricultural system to sustain soil quality while enhancing rapeseed nutritional value. J. of Environ. Management, 273, 1 November 2020, 111092
Cordeau, S. (2022). Conservation Agriculture and Agroecological Weed Management. Agronomy 2022, 12(4), 867, https://doi.org/10.3390/agronomy12040867
Das, T. K., Bhattacharyya, R., Sudhishri, S., Sharma, A. R., Saharawat, Y., Bandyopadhyay, K. K., Sepat. S., Bana, R. S., Aggarwal, P., Sharma, R. K., Bhatia A. (2014). Conservation agriculture in an irrigated cotton- wheat system of the western Indo-Gangetic Plains Crop and water productivity and economic profitability. Field Crop Res. 158, 24-33.
DeVita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. and Pisante, M. (2007). No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69-78.
Devkota, M., Devkota, K. P., Kumar, S. (2022). Conservation agriculture improves agronomic, economic, and soil fertility indicators for a clay soil in a rainfed Mediterranean climate in Morocco. Agricult. Syst. 201, 103470
Dey, A., Dwivedi, B., Bhattacharyya, R., Datta, S. P., Meena, M. C., Jat, R. K., Gupta, R. K., Jat, M. L., Singh V. K., Das, D., Singh, R. G. (2020). Effect of conservation agriculture on soil organic and inorganic carbon sequestration, and their lability: a study from a rice-wheat cropping system on a calcareous soil of eastern Indo-Gangetic Plains. Soil Use Manage, 1-10. https://doi.org/10.1111/sum.12577.
European Journal of Soil Biology, 68 (2015), pp. 9-17.
Gajda, A. M., Czyż, E. A., Dexter, A. R., Furtak, K. M., Grządziel, Stanek-Tarkowska, J. (2018). Effects of different soil management practices on soil properties and microbial diversity. International Agrophysics, 32 (2018), pp. 81-91.
Ghosh, A., Bhattacharyya, R., Dey, A., Dwivedi, B. S., Meena, M. C., Manna, M. C. and Agnihotri, R. (2019). Long-term fertilization impact on temperature sensitivity of aggregate associated soil organic carbon in a sub-tropical inceptisol. Soil Tillage Res. 195, 104369 ref 39. doi: 10.1016/j.still.2019.104369
Ghosh, A., Kumar, S., Manna, M. C., Singh, A. K., Sharma, P., Sarkar, A.,Saha, M., Bhattacharyya, R., Misra, S., Biswas, S. S., Biswas, D. R., Gautam, K. and Kumar, R. Long-term in situ moisture conservation in horti-pasture system improves biological health of degraded land. J. Environ. Management. 248, https://doi.org/ 10.1016/j.jenvman.2019.109339.
Giacomini, S. J., Machet, J. M., Borzard, H., Recous, S. (2010). Dynamics and recovery of fertilizer (SN in soil and winter wheat crop under minimum versus conventional tillage. Soil Tillage Res. 108, 51-58
Govaerts, B., Sayre, K. D., Lichter, K., Dendooven, L., Deckers, J. (2007). Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rainfed maize/wheat systems. Plant Soil, 291, 39-54
Handiso, M. A., Hemacho, A. H., Bongido, B. L., Anjulo, M. M. (2023). Effect of conservation tillage on soil and water conservation, yield and yield components of Maize (Zea mays L.) in South Ari District, Southern Ethiopia. Discover Agriculture, 1-10.
Hobbs, P. R., Sayre, K., Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture Philos. Trans R. Soc. Lond B. Biol. Sci. 363 (1491), 543-555. doi: 10.1098/rstb.2007.2169
Hobbs, P. R., Sayre, K., Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. Biol., 363 (2008), pp. 543-555
Hoyle, F. C. and Murphy, D. V. (2006). Seasonal changes in microbial function and diversity associated with stubble retention versus burning. Aust. J. Soil Res., 44, 407-423.
Jat, H.S., Datta, A., Sharma, P.C., Kumar, V., Yadav, A.K., Choudhary, M., Choudhary, V., Gathala, M.K., Sharma, D.K., Jat, M.L., Yaduvanshi, N.P.S., Singh, G. and McDonald, A. (2018). Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science. 64(4): 531-545
Jiang, F., Qian, Y., Guo Z., Gao, L., Zhang, Z., Cao. Z., Guo, J., Liu, F., Peng, X. (2022). Evaluating the regional suitability of conservation tillage and deep tillage based on crop yield in the black soil of Northeast China a meta-analysis. Acta Pedol. Sin. 59 (4), 935-952.
Kaschuk, G., Alberton, O., Hungria, M. (2010). Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem., 42, 1-1
Kumar, J., Singh, B., Yadav, D. B., Yadav, A., Yadav, P. K., Tallapragada, S. (2024). Zero-tillage in Mung Bean-Wheat Cropping System: Impact on Soil Properties and Crop Productivity. Legume Research- An International Journal. 10.18805/LR-5154
Kurothe, R. S., Kumar, G., Singh, R., Singh, H. B., Tiwari, S. P., Vishwakarma, A. K., Sena, D. R., Pande, V. C. (2014). Effect of tillage and cropping systems on runoff, soil loss and crop yields under semiarid rainfed agriculture in India. Soil and Till. Res, 140, PP 126-134.
Lal, R. (2009). Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677), 1673-1627
Lal. R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304(5677):1623-7. DOI: 10.1126/science.1097396.
Lampurlanes, J. C., Angas, P. and Martinez, C. C. (2002). Tillage effects on water storage during fallow, and on barley root growth and yield in two contrasting soils of the semi-arid Segarra region in Spain. Soil Tillage Res. 65(2):207-220. doi: 10.1016/S0167-1987(01)00285-9.
Lampurlanes, J., Plaza-Bonilla, D., Alvaro-Fuentes, J, Cantero-Martínez, C. (2016). Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 189, Pages 59-6
Lenka, N. K. and Lal, R. (2013). Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Till. Res. 126, 18-89.
Li, L., Bellotti, B., Zhang, R. and Zhang, H. (2015). Conservation Agriculture in Rainfed Areas of China. Conservation Agriculture Springer. Cham. 311-334. DOI: 10.1007/978-3-319-11620-4_13
Liu, L., Liu, T., Qiu, j., Penuelas, J., Sardans, W., Tan. X., Wei, Y., Cui. Q., Cui. C., Wu L., Liu, B., Zhou, H., He, L. and Fang (2023). Crop residue return sustains global soil ecological stoichiometry balance Glob. Chang. Biol. 29(8), 2203-2226.
Luo, Z., Wang, E. and Sun, O. J. (2010). Agri. Eco. Environ. 139, Issues 1–2, 224-231
Madari, B., Machado, P. L., Torres, E., de Andrade, A.G. and Valencia, L. I. (2005). No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Till. Res. 80, 185-200.
Mancinelli, M. M. and Yang, X. (2010). Influence of tillage on the dynamics of loose and occluded particulate and humified organic matter fractions. Soil Bio. Biochem. 32, 1151-1160
Mangalassery, S., Mooney, S. J., Sparkes, D. L., Fraser, W. T. and Sjogersten, S. (2015). Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils
Maucieri, C., Tolomio, M., McDaniel, M. D., Zhang, Z., Robatjazi, J., Borin, M. (2021). No-tillage effects on soil CH4 fluxes: A meta-analysis. Soil Till. Res. 212. https://doi.org/10.1016/j.still.2021.105042
Mazzoncini, M., Di Bene, C., Coli, A., Antichi, D., Petri, M. and Bonari, E. (2008). Rainfed wheat and soybean productivity in a long-term tillage experiment in central Italy. Agron. J. 100, 1418 1429.
Mina, B. L., Saha, S., Kumar, N., Srivastva, A. K. and Gupta, H. S. (2008). Changes in soil nutrient content and enzymatic activity under conventional and zero-tillage practices in an Indian sandy clay loam soil. Nutrient Cycling in Agroecosyst. 8, 273-281.
Monneveux. P., Quillerou, E., Sanchez, Cesati, J. L. (2006). Effect of zero tillage and residue conservation on continuous maize cropping in sub-tropical environment (Mexico). Plant and soil. 279, 95-105.
Mooshammer, M., Wanek, W., Hammerle, I., Fuchslueger. L., Hofhansl, F., Knoltsch, A., Schnecker. J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K. M., Boltenstern, S. Z., Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, p. 3694
Nyawade, S. O., Karanja, N. N., Gachene, C. K. K., Gitari, H. I., Schulte-Geldermann. E. and Parker, M. (2019). Short-term dynamics of soil organic matter fractions and microbial activity in smallholder legume intercropping systems. Appl. Soil Ecol. 142, 123-135
Ovedele, D. J., Schjenning, P., Sibbeven, E., Debosz. K. (1999). Aggregation and organic matter fractions of three Nigerian soils as affected by soil disturbance and incorporation of plant material. Soil and Tillage Res. 50 (1999), pp. 105-114
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere. L. and Grace, P. (2014). Conservation agriculture and ecosystem services an overview. Agric. Ecosyst. Environ, 187, 87-105
Parihar, C. M., Jat, S. L., Singh, A. K., Kumar, B., Singh, Y., Pradhan, S., Pooniya, V., Dhauja, A., Chaudhary, V., Jat, M. L., Jat, R. K., Yadav, O. P. (2016). Conservation agriculture in irrigated intensive maize-based systems of north-western India. Effects on crop yields, water productivity and economic profitability. Field Crops Res. 193, Pages 104-116
Partibha, G., Srinivas, I., Rao, K. V., Shanker, A.K., Raju, B. M. K., Choudhary, D.K., Rao, K.S., Srinivasarao, C., Maheswari, M. (2016). Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi-arid tropics of India. Atmospheric Environ. 145, Pages 239-250.
Rahman, M., Aravindakshan, S., Hoque, M. A., Rahman, M. A., Gulandaz, M. A., Rahman, J. and Islam, M. T. (2021). Conservation tillage (CT) for climate-smart sustainable intensification: Assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh. Environ. Sust. Indicators. https://doi.org/10.1016/j.indic.2021.100106
Ren. Z., Han, X., Feng, H., Wang, L., Ma, G., Li, J., Lv. J., Tian, W., He, X., Zhao, Y. and Wang, C. (2024). Long-term conservation tillage improves soil stoichiometry balance and crop productivity based on a 17-year experiment in a semi-arid area of northern China. Sci. Total Environ. Vol 908, 168-283.
Resck, D. C., Siemens, I., Kirwan, R., Kaiser, K., Saunder, M. amd Osborne, B. A. (2008). Dissolved carbon leaching from an trish cropland soil is increased by reduced tillage and cover cropping. Agric. Ecosys. Environ. 142, 393-402.
Rhoton, F.E. (2000). Influence of time on soil response to no-till practices. Soil Science Society of America Journal. 64(2): 700-709.
Rice-Wheat Consortium (RWC). (2006). Research highlights 2005 Rice-Wheat Consortium for the Indo-Gangetic plains, 12th Meeting of the Regional Steering Committee of RWC, Varanasi, Uttar Pradesh, India
Rieger, S., Richner, W., Streit, B., Frossard, E., Liedgens, M. (2008). Growth yield and yield components of winter wheat and the effects of tillage intensity preceding crops, and N fertilization. Eur. J. Agron. 28, 405-411.
Ruan, L., Robertson, G. P. (2013). Initial nitrous oxide, carbon dioxide, and methane costs of converting conservation reserve program grassland to row crops under no till vs. conventional tillage. Global Change Biology, 19 (2013), pp. 2478-2489.
Saha, R. and Ghosh, P. K. (2010). Effect of land configuration on water economy, crop yield and profitability under rice (Oryza sativa) based cropping system in North Ean India Indian J. Agri. Sci. 80, 16-19.
Saho, V., Xie, Y., Wang, C., Yue, J., Yao, Y., Li, X., Liu, W., Zhu, Y. and Guo, T. (2016). Effect of different tillage approaches on soil nutrients, water use and wheat-maize vield in rainfed dry land regions of North China. European J. Agron. 8, 17-45.
Schlesinger, W. H. and Andrews. A. (2000). Soil respiration and the global carbon cycle. Biogeochem 48, 7-20.
Shakoor, A., Shahbaz, M., Farooq, T. H., Sahar, N. E., Shahzad, S. M., Altaf, M. M., Ashraf, M. (2021). A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ., 750, Article 142299.
Sharma, K. L., Chandrika. D. S., Grace, K., Maruthi, G. R., Sharma, S. K., Thakur, H. S., Jain, M. P., Sharma, R. A., Chary, G. R., Srinivas, K., Gajbhiye, P., Venkatravamma, K., Lal, M., Kumar, T. S., Usha Ranı, K., Ramachandran, K., Sriniva Rao. C., Reddy, K. S., Venkateswariu, B. (2016). Soil quality assessment under restorative soil management practices in soybean (Glycine max) after six years in semi-arid tropical black lands of central India. Commun. Soil Sci. Plant Anal. 47, 1465-1475.
Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., Grace, J. K., Ramesh, V. (2005) Long-term soil management effects on crop yields and soil quality in a dryiand Alfisol. Soil Till. Res. 83, 246-259.
Singh, A., Phogat, V.K., Dahiya, R.K. and Batra, S.D. (2014). Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice-wheat cropping system. Soil and Tillage Research. 140: 98-105.
Six, J., Elliott, E. T., Paustian, K. (2000). Soil macroaggregate turnover and micro aggregate formation a mechanism for C sequestration under no-tillage agriculture Soil Bio. Biochem. 32, 2099-2103.
Six, J., Bossuyt, H., Degryze, S., Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7-31
Smith, K. A. and Conen, F. (2004). Impacts of land management on fluxes of trace greenhouse gases. Soil Use Mgmt. 20, 255-263.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar. P., McCarl. B., Ogle, S., Mara, F. O., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider. U., Towprayoon, S., Wattenbach, M., Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philos Trans R. Soc. 8363, 789-813
Stanek-Tarkowska, J., Czyz, E.A., Dexter, A.R. and Slawinski, C. (2018). Effects of reduced and traditional tillage on soil properties and diversity of diatoms under winter wheat. International Agrophysics. 32: 403-409.
Thierfelder, C., Wall, P. C. (2010). Rotation in conservation agriculture systems of Zambia: effects on soil quality and water relations. Exp. Agric., 46, 309-325.
Tia Guo-Mei, X, Y, Zhang, Bao-Lin Chen, 2014 Soil labile organic carbon and microbial activity changes with age in citrus (Citrus sinensis Osb.) plantations in China. Aust. For. 77, 153-158.
Unger, P. W., Langdale, D. W., Papendick, R. I. (1988). Role of crop residues – improving water conservation and use. W.L. Hargrove (Ed.), Cropping Strategies for Efficient Use of Water and Nitrogen. American Soc. Agron. 51,69-100.
Ussiri, D. A. N., Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an Alfisol in Ohio. Soil Till. Res., 104 (2009), pp. 39-47.
Utomo. M. (2014). Chapter 4. Conservation tillage assessment for mitigating greenhouse gas emission in rain-fed agro-ecosystem Sustainable living with environmental risk Pp-15-44, Japan springer.
Venkatesh, M. S., Hazra, K. K., Ghosh, P. K., Praharaj, C. S. and Kumar, N. (2013). Long-term effect of pulses and nutrient management on soil carbon sequestration in Indo-Gangetic plains of India. Canadian Journal of Soil Science. https://doi.org/10.4141/cjss2012-072
Wang, X. B., Cat, D. X., Hoogmoed, W. B., Oenema, O. and Perdok, U. D. (2007). Developments in conservation silage in rainfed regions of North China. Soil Till. Res. 93; Issue 2, 219-250.
Witmer, J. E., Hough-Goldstein, J.A., Pesek, J. D. (2003). Ground-dwelling and foliar arthropods in four cropping systems ground-dwelling and foliar arthropods in four cropping systems. Environ. Entomol., 32, 366-376
Yadav, A., Malik, R.K., Balyan, R.S., Malik, R.S., Jaipal, S., Phogat, V.K., Singh, R., Dabur, K.R., Dharam-Bir and Kumari, K. 2012. Impact of long-term zero-tillage on productivity and sustainability in different cropping systems. (In) Proceedings of National Seminar on Sustainable Agriculture and Food Security: Challenges in Changing Climate, 27ñ28 March, 2012, Directorate of Research, CCS Haryana Agricultural University, Hisar, pp. 128.
Yadav, A., Malik, R.K., Yadav, D.B. and Kumar, V. 2020. Dry direct seeded rice and zero tillage wheat: Two most potential resource conservation technologies in rice-wheat cropping system for crop residue management, mitigating global warming and enabling sustainable intensification in India. (In) Proceedings of ISWS Biennial Conference on Weed Management for Enhancing Farmers Income and Food Security, 5ñ7 February, 2020, ICAR-Central Coastal Agricultural Research Institute, Goa (India), pp. 27.
Yadav, I. G.S., Das, A., Babu, S., Mohapatra, K. P., Lal, R. and Rajkhowa, D. (2021). The potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration, and productivity of maize-based cropping system in the eastern Himalayas. International Soil and Water Conser. Res. 9, 279-290.
Yue, K., Fornara, D. A., Hedenec, P., Wu, Q., Peng, Y., Peng, Xi., Ni, X., Wu, F., Penuelas, J. (2023). No tillage decreases GHG emissions with no crop yield tradeoff at the global scale Soil & Tillage Research 1-10. https://doi.org/10.1016/j.still.2023.105643
Zuber, S. M. and Villamil, M. B. (2016). Meta-analysis approach to assess the effect of tillage on microbial biomass and enzyme activities. Soil Bio. Biochem. 97, 176-187.
Downloads
Submitted
Published
Issue
Section
License
Journal of Soil Salinity and Water Quality serves as an official organ of the Indian Society of Soil Salinity and Water Quality (ISSSWQ) for the publication of research papers, reviews, and short communications as per the constitution and by-laws of the society. Soft and hard copy of the journal are sent free to all its members. All disputes are subject to the exclusive jurisdiction of competent court and forums in Kamal only. The society does not assume any responsibility for opinion by the authors in the articles and no-material in any form can be reproduced without the prior permission of the society. The society is not responsible for any delay, whatsoever, in publication/ delivery of the periodicals to the subscribers due to unforeseen circumstances or postal delay. The society does not vouch for any claims made by the advertisers of products and services. The publisher and the editors shall not be held liable for any consequences in the event of such claim not being honoured by the advertisers.