Crop Improvement Strategies for Addressing Waterlogging and Salinity in Coastal Ecosystems
Crop improvement strategies for coastal ecosystems
193 / 127
Keywords:
water logging, salinity, Physiological strategy, Breeding strategy, Coastal regionAbstract
Rice is the predominant crop in coastal regions and serves as a vital source of livelihood and income security for millions of people residing in these areas. However, coastal regions are highly vulnerable to climate change and face numerous abiotic stresses, including soil and water salinity, erratic rainfall, saline mangroves, heavy rainfall, prolonged dry spells, saline water intrusion, cyclonic disturbances, high temperatures, and high humidity. These challenges expose rice crops to both biotic and abiotic stresses, with the unpredictable and dynamic nature of these threats amplifying their impact. Coastal ecosystems play a crucial role in agricultural production, but they are increasingly at risk due to waterlogging and salinity caused by rising sea levels, extreme weather events, and human interventions. Currently, nearly 200 million people live in coastal areas that are less than 5 meters above mean sea level (MSL), a number that is projected to rise due to the ongoing effects of climate change, including increasing soil salinity, seawater intrusion, soil pollution, and the use of low-quality water. By the end of this century, the population in coastal regions may reach 400-500 million. Since rice is often the only crop cultivated in these areas, providing a lifeline to millions of resource-poor farmers in stress-prone environments, it is essential that crop improvement efforts for rice in coastal regions be given higher priority. This review examines the crop improvement strategies aimed at addressing these challenges, with a focus on genetic, biotechnological, and management approaches. Advances in breeding for salt-tolerant and waterlogging-tolerant rice varieties, along with the use of molecular markers and gene-editing technologies, offer promising solutions. By integrating these strategies with sustainable agronomic practices, it is possible to enhance crop resilience and ensure food security in coastal regions affected by salinity and waterlogging stress.
Downloads
References
Agboma, P. C., Sinclair, T. R., Jokinen, K., Peltonen-Sainio, P., & Pehu, E. (1997). An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field crops research, 54(1), 51-64.
Ahloowalia, B. S., Maluszynski, M., & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, 187-204.
Ahmad, R. A. F. I. Q., & Jabeen, R. (2005). Foliar spray of mineral elements antagonistic to sodium-a technique to induce salt tolerance in plants growing under saline conditions. Pakistan Journal of Botany, 37(4), 913.
Ahmed, H. G. M. D., Zeng, Y., Raza, H., Muhammad, D., Iqbal, M., Uzair, M., ... & El Sabagh, A. (2022). Characterization of wheat (Triticum aestivum L.) accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage. Frontiers in Plant Science, 13, 953670.
Akhtar, S., Niaz, M., Zaffar Iqbal, M., & Anwar Saeed, M. (2015). Comparison of wheat (triticum aestivum l.) somaclones with their respective parents for salt tolerance. Journal of Agricultural Research (03681157), 53(4).
Akram, M. S. (2006). Influence of exogenously applied K from different sources on Sunflower under salt stress. University of Agric. Faisalabad, Pakistan.
Akram, N. A., & Ashraf, M. (2011). Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak. J. Bot, 43(1), 521-530.
Akter, R., Hasan, N., Reza, F., Asaduzzaman, M., Begum, K., & Shammi, M. (2023). Hydrobiology of saline agriculture ecosystem: A review of scenario change in south-west region of Bangladesh. Hydrobiology, 2(1), 162-180.
Alexander, A. (1986, March). Optimum timing of foliar nutrient sprays. In Foliar Fertilization: Proceedings of the First International Symposium on Foliar Fertilization, Organized by Schering Agrochemical Division, Special Fertilizer Group, Berlin (FRG) March 14–16, 1985 (pp. 44-60). Dordrecht: Springer Netherlands.
Armstrong, W., & Drew, M. C. (2002). Root growth and metabolism under oxygen deficiency. In Plant roots (pp. 1139-1187). CRC Press.
Arshi, A., Abdin, M. Z., & Iqbal, M. (2006). Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Scientia horticulturae, 111(1), 84-90.
Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216.
Ashraf, M., & Khanum, A. (1997). Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. Journal of Agronomy and Crop Science, 178(1), 39-51.
Ashraf, M., & O'leary, J. W. (1996). Responses of some newly developed salt‐tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. Journal of Agronomy and Crop Science, 176(2), 91-101.
Ashraf, M., Afzal, M., Ahmad, R., Maqsood, M. A., Shahzad, S. M., Tahir, M. A., ... & Aziz, A. (2012). Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress. Archives of Agronomy and Soil Science, 58(4), 385-398.
Awad, A. S., Edwards, D. G., & Campbell, L. C. (1990). Phosphorus enhancement of salt tolerance of tomato. Crop Science, 30(1), 123-128.
Awad, A. S., Edwards, D. G., & Campbell, L. C. (1990). Phosphorus enhancement of salt tolerance of tomato. Crop Science, 30(1), 123-128.
Bange, H. W. (2006). Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science, 70(3), 361-374.
Barrett-Lennard, E. G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and soil, 253, 35-54., E. G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and soil, 253, 35-54.
Batool, N., Shahzad, A., Ilyas, N., & Noor, T. (2014). Plants and salt stress. International Journal of Agriculture and Crop Sciences, 7(9), 582.
Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., & Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific reports, 6(1), 1-16.
Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in biotechnology, 14(3), 89-97.
Bonaglia, S., Rütting, T., Kononets, M., Stigebrandt, A., Santos, I. R., & Hall, P. O. (2022). High methane emissions from an anoxic fjord driven by mixing and oxygenation. Limnology and Oceanography Letters, 7(5), 392-400.
Bouchereau, A., Aziz, A., Larher, F., & Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant science, 140(2), 103-125.
Carrow, R. N., & Duncan, R. R. (1998). Salt-affected turfgrass sites: Assessment and management. John Wiley & Sons.
Champagnol, F. (1981). Relationships between phosphate nutrition of plants and salt toxicity.
Champagnol, F. (1981). Relationships between phosphate nutrition of plants and salt toxicity.
Cheng, Z., Targolli, J., Huang, X., & Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding, 10, 71-82.
Chinnusamy, V., Xiong, L., & Zhu, J. K. (2005). and Molecular Biology Approaches for Crop Improvement for Stress Environments. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches, 1690.
Clarke, D., Williams, S., Jahiruddin, M., Parks, K., & Salehin, M. (2015). Projections of on-farm salinity in coastal Bangladesh. Environmental Science: Processes & Impacts, 17(6), 1127-1136.
Cong, P., Ouyang, Z., Hou, R., & Han, D. (2017). Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil and Tillage Research, 168, 33-41.
Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44, 815-826.
Davies, M. S., & Hillman, G. C. (1988). Effects of soil flooding on growth and grain yield of populations of tetraploid and hexaploid species of wheat. Annals of Botany, 62(6), 597-604.
de San Celedonio, R. P., Abeledo, L. G., & Miralles, D. J. (2018). Physiological traits associated with reductions in grain number in wheat and barley under waterlogging. Plant and Soil, 429, 469-481.
Ebert, G., Eberle, J., Ali-Dinar, H., & Lüdders, P. (2002). Ameliorating effects of Ca (NO3) 2 on growth, mineral uptake and photosynthesis of NaCl-stressed guava seedlings (Psidium guajava L.). Scientia Horticulturae, 93(2), 125-135.
El-Siddig, K. A. M. A. L., & Lüdders, P. (1993). Interactive effects of salinity and nitrogen nutrition on biomass production and distribution in apple trees.
El-Tayeb, M. A. (2005). Response of barley grains to the interactive e. ect of salinity and salicylic acid. Plant growth regulation, 45, 215-224.
Epstein, E., & Bloom, A. J. (1853). Mineral nutrition of plants: principles and perspectives. Sinauer.
Epstein, E., & Bloom, A. J. (1853). Mineral nutrition of plants: principles and perspectives. Sinauer.
Fageria, N. K., Stone, L. F., & Santos, A. B. D. (2012). Breeding for salinity tolerance. Plant breeding for abiotic stress tolerance, 103-122.
Farooq, F., Rashid, N., Ibrar, D., Hasnain, Z., Ullah, R., Nawaz, M., ... & Khan, S. (2022). Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS One, 17(2), e0263978.
Feist, S. E., Hoque, M. A., & Ahmed, K. M. (2023). Coastal salinity and water management practices in the Bengal Delta: A critical analysis to inform salinisation risk management strategies in Asian Deltas. Earth Systems and Environment, 7(1), 171-187.
Forster, B. P. (2001). Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica, 120, 317-328.
Gardner, B. R., Nielsen, D. C., & Shock, C. C. (1992). Infrared thermometry and the crop water stress index. I. History, theory, and baselines. Journal of production agriculture, 5(4), 462-466.
Gill, J. S., Clark, G. J., Sale, P. W., Peries, R. R., & Tang, C. (2012). Deep placement of organic amendments in dense sodic subsoil increases summer fallow efficiency and the use of deep soil water by crops. Plant and Soil, 359, 57-69.
Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia horticulturae, 78(1-4), 127-157.
Habibzadeh, A., Goodarzi, M., & Rafiei, M. (2022). Application of Quality Method for Qualitative Flood Analysis in Flood Irrigation (case study north Uremia Lake flood). Hydrogeomorphology, 8(29), 21-1.
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in plant science, 7, 1787.
Haq, M. I., Shamsudduha, M., Zahid, A., Ahmed, K. M., Kamal, A. M., & Taylor, R. G. (2024). What drives changes in surface water salinity in coastal Bangladesh?. Frontiers in Water, 6, 1220540.
Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant growth regulation, 21, 79-102.
Herzog, M., Striker, G. G., Colmer, T. D., & Pedersen, O. (2016). Mechanisms of waterlogging tolerance in wheat–a review of root and shoot physiology. Plant, cell & environment, 39(5), 1068-1086.
Howard, D. D., Gwathmey, C. O., & Sams, C. E. (1998). Foliar feeding of cotton: Evaluating potassium sources, potassium solution buffering, and boron. Agronomy Journal, 90(6), 740-746.
Hu, L., Li, H., Pang, H., & Fu, J. (2012). Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of plant physiology, 169(2), 146-156.
Huang, B., Johnson, J. W., Nesmith, S., & Bridges, D. C. (1994). Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. Journal of experimental botany, 45(2), 193-202.
Huang, M., Zhang, Z., Sheng, Z., Zhu, C., Zhai, Y., Lu, P., & Brinkman, D. (2019). Soil salinity and maize growth under cycle irrigation in coastal soils. Agronomy Journal, 111(5), 2276-2286.
Iqbal, M. N., Rasheed, R., Ashraf, M. Y., Ashraf, M. A., & Hussain, I. (2018). Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environmental Science and Pollution Research, 25, 23883-23896.
Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of botany, 91(2), 227-241.
Kaur, G., Sanwal, S. K., Sehrawat, N., Kumar, A., Kumar, N., & Mann, A. (2022). Getting to the roots of Cicer arietinum L.(chickpea) to study the effect of salinity on morpho-physiological, biochemical and molecular traits. Saudi Journal of Biological Sciences, 29(12), 103464.
Kisaakye, E. (2018). Effect of soil moisture availability and nitrogen source on nitrogen-use efficiency in cereals (Doctoral dissertation, University Of Tasmania).
Kisaakye, E. (2018). Effect of soil moisture availability and nitrogen source on nitrogen-use efficiency in cereals (Doctoral dissertation, University Of Tasmania).
Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in sustainable food systems, 4, 533781.
Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in sustainable food systems, 4, 533781.
Lema-Rumińska, J., Kulus, D., Tymoszuk, A., Miler, N., Woźny, A., & Wenda-Piesik, A. (2021). Physiological, biochemical, and biometrical response of cultivated strawberry and wild strawberry in greenhouse gutter cultivation in the autumn-winter season in Poland—Preliminary Study. Agronomy, 11(8), 1633.
Li, H., Zhu, Y., Hu, Y., Han, W., & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta physiologiae plantarum, 37, 1-9.
Liang, Z., Ma, D., Tang, L., Hong, Y., Luo, A., Zhou, J., & Dai, X. (1997). Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants. Chinese Journal of Biotechnology, 13(3), 153-159.
Maathuis, F. J., & Amtmann, A. N. N. A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of botany, 84(2), 123-133.
Mahmood, K. (2011). Salinity tolerance in barley (Hordeum vulgare L.): effects of varying NaCl, K?/Na? and NaHCO3 levels on cultivars differing in tolerance. Pak J Bot, 43(3), 1651-1654.
Mainuddin, M., Karim, F., Gaydon, D. S., & Kirby, J. M. (2021). Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Scientific reports, 11(1), 7041.
Mäkelä, P., Munns, R., Colmer, T. D., Condon, A. G., & Peltonen-Sainio, P. (1998). Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology, 25(6), 655-663.
Malik, Z., Malik, N., Noor, I., Kamran, M., Parveen, A., Ali, M., ... & Fahad, S. (2023). Combined effect of rice-straw biochar and humic acid on growth, antioxidative capacity, and ion uptake in maize (Zea mays L.) grown under saline soil conditions. Journal of Plant Growth Regulation, 42(5), 3211-3228.
Manchanda, G., & Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30, 595-618.
Marschner, H. (1995). Mineral nutrition of higher plants 2nd edn. Institute of Plant Nutrition University of Hohenheim: Germany.
Marschner, H. (1995). Mineral nutrition of higher plants. Academic. Great Britain.
Marschner, H. (1995). Mineral nutrition of higher plants. Academic. Great Britain.
Marschner, H. (1995). Mineral nutrition of higher plants. Academic. Great Britain.
Maryum, Z., Luqman, T., Nadeem, S., Khan, S. M. U. D., Wang, B., Ditta, A., & Khan, M. K. R. (2022). An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science, 13, 907937.
Masunaga, E., Alford, M. H., Lucas, A. J., & Freudmann, A. R. M. (2023). Numerical simulations of internal tide dynamics in a steep submarine canyon. Journal of Physical Oceanography, 53(11), 2669-2686.
ME Trenkel, T. (2021). Slow-and controlled-release and Stabilized Fertilizers: an option for enhancing nutrient use effiiency in agriculture. International Fertilizer Industry Association (IFA).
ME Trenkel, T. (2021). Slow-and controlled-release and Stabilized Fertilizers: an option for enhancing nutrient use effiiency in agriculture. International Fertilizer Industry Association (IFA).
ME Trenkel, T. (2021). Slow-and controlled-release and Stabilized Fertilizers: an option for enhancing nutrient use effiiency in agriculture. International Fertilizer Industry Association (IFA).
Mengel K., Kirkby E. A. 2001. Principles of plant nutrition (5th ed.)
Mengel, K. (2001, September). Alternative or complementary role of foliar supply in mineral nutrition. In International Symposium on Foliar Nutrition of Perennial Fruit Plants 594 (pp. 33-47).
Merchan, F., Breda, C., Perez Hormaeche, J., Sousa, C., Kondorosi, A., Aguilar, O. M., ... & Crespi, M. (2003). A Krüppel-like transcription factor gene is involved in salt stress responses in Medicago spp. Plant and Soil, 257, 1-9.
Misra, A. N., Srivastava, A., & Strasser, R. J. (2001). Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of plant physiology, 158(9), 1173-1181.
Misra, A. N., Srivastava, A., & Strasser, R. J. (2001). Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of plant physiology, 158(9), 1173-1181.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663.
Najib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences, 115, 17-31.
Navarro, J. M., Martı́nez, V., & Carvajal, M. (2000). Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Science, 157(1), 89-96.
Nguyen, L. T., Osanai, Y., Anderson, I. C., Bange, M. P., Tissue, D. T., & Singh, B. K. (2018). Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant and Soil, 431, 371-387.
Ni, Q., Li, W., Liang, X., Liu, J., Ge, H., & Dong, Z. (2021). Gill transcriptome analysis reveals the molecular response to the acute low-salinity stress in Cyclina sinensis. Aquaculture reports, 19, 100564.
Noreen, S., Faiz, S., Akhter, M. S., & Shah, K. H. (2019). Influence of foliar application of osmoprotectants to ameliorate salt stress in sunflower (Helianthus annuus L.). Sarhad J. Agric, 35, 1316-1325.
Oh, D. H., Lee, S. Y., Bressan, R. A., Yun, D. J., & Bohnert, H. J. (2010). Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 61(4), 1205-1213.
Ojja, S., Kisaka, S., Ediau, M., Tuhebwe, D., Kisakye, A. N., Halage, A. A., ... & Mutyoba, J. N. (2018). Prevalence, intensity and factors associated with soil-transmitted helminths infections among preschool-age children in Hoima district, rural western Uganda. BMC infectious diseases, 18, 1-12.
Pang, H. C., Li, Y. Y., Yang, J. S., & Liang, Y. S. (2010). Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agricultural Water Management, 97(12), 1971-1977.
Pang, J., Cuin, T., Shabala, L., Zhou, M., Mendham, N., & Shabala, S. (2007). Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiology, 145(1), 266-276.
Pang, J., Cuin, T., Shabala, L., Zhou, M., Mendham, N., & Shabala, S. (2007). Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiology, 145(1), 266-276.
Panhwar, N. A., Buriro, S. A., Memon, A. H., Panhwar, S. A., & Lahori, A. H. (2021). 03. Influence of salinity on germination and early seedling of five wheat (Triticum aestivum L) genotypes. Pure and Applied Biology (PAB), 10(4), 956-961.
Panhwar, Q. A., Ali, A., Naher, U. A., Depar, N., & Memon, M. Y. (2019). Ameliorating plant salt stress through bacterial inoculation: Prospects and challenges. Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches: Volume 2, 253-268.
Papadopoulos, I., & Rendig, V. V. (1983). Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant and Soil, 73, 47-57.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
Pervez, H., Ashraf, M., & Makhdum, M. I. (2005). Influence of potassium rates and sources on seed cotton yield and yield components of some elite cotton cultivars. Journal of plant nutrition, 27(7), 1295-1317.
Prasad, S. R., Bagali, P. G., Hittalmani, S., & Shashidhar, H. E. (2000). Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Current Science, 162-164.
Pujol, V., & Wissuwa, M. (2018). Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency. BMC Research Notes, 11, 1-6.
Qi, Z., & Spalding, E. P. (2004). Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiology, 136(1), 2548-2555.
Qi, Z., & Spalding, E. P. (2004). Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiology, 136(1), 2548-2555.
Qin, Y., Druzhinina, I. S., Pan, X., & Yuan, Z. (2016). Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34(7), 1245-1259.
Rahman, M. M., Penny, G., Mondal, M. S., Zaman, M. H., Kryston, A., Salehin, M., ... & Müller, M. F. (2019). Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. Water security, 6, 100024.
Rao, D. L. N., Giller, K. E., Yeo, A. R., & Flowers, T. J. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Annals of botany, 89(5), 563-570.
Ravikovitch, S. (1973). Effects of brackish irrigation water and fertilizers on millet and corn. Experimental Agriculture, 9(2), 181-188.
Robertson, E. P. (2007, November). Low-salinity waterflooding to improve oil recovery—Historical field evidence. In SPE Annual Technical Conference and Exhibition? (pp. SPE-109965). SPE.
Roy, P. R., Tahjib-Ul-Arif, M., Polash, M. A. S., Hossen, M. Z., & Hossain, M. A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 25, 611-624.
Rus, A., Lee, B. H., Munoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J. K., ... & Hasegawa, P. M. (2004). AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant physiology, 136(1), 2500-2511.
Saito, T., Matsukura, C., Ban, Y., Shoji, K., Sugiyama, M., Fukuda, N., & Nishimura, S. (2008). Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). Journal of the Japanese Society for Horticultural Science, 77(1), 61-68.
Saleh, J., Najafi, N., Oustan, S., Aliasgharzad, N., & Ghassemi-Golezani, K. (2013). Effects of Silicon, Salinity and Waterlogging on the Extractable Zn, Cu, K and Na in a Sandy Loam Soil. International Journal of Agriculture, 3(1), 56.
Satti, S. M. E., & Al‐Yahyai, R. A. (1995). Salinity tolerance in tomato: Implications of potassium, calcium, and phosphorus. Communications in soil science and Plant Analysis, 26(17-18), 2749-2760.
Satybaldiyev, B., Ismailov, B., Nurpeisov, N., Kenges, K., Snow, D. D., Malakar, A., ... & Uralbekov, B. (2023). Downstream hydrochemistry and irrigation water quality of the syr darya, aral sea basin, south kazakhstan. Water Supply, 23(5), 2119-2134.
Schirawski, J., & Perlin, M. H. (2018). Plant–microbe interaction 2017—the good, the bad and the diverse. International Journal of Molecular Sciences, 19(5), 1374.
Serraj, R. A. C. H. I. D., & Sinclair, T. R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant, cell & environment, 25(2), 333-341.
Silva, A. A. D., Veloso, L. L. D. S., Nascimento, R. D., Nascimento, E. C., Bezerra, C. V. D. C., & Pereira, M. C. D. A. (2019). Gas exchanges and growth of cotton cultivars under water salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(6), 393-399.
Sparks, R. T., Shepherd, B. S., Ron, B., Richman III, N. H., Riley, L. G., Iwama, G. K., ... & Grau, E. G. (2003). Effects of environmental salinity and 17α-methyltestosterone on growth and oxygen consumption in the tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136(4), 657-665.
Sun, W., Bernard, C., Van De Cotte, B., Van Montagu, M., & Verbruggen, N. (2001). At‐HSP17. 6A, encoding a small heat‐shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 27(5), 407-415.
Taiz, L., & Zeiger, E. (2002). Photosynthesis: physiological and ecological considerations. Plant Physiol, 9, 172-174.
Takeda, K., & Fukuyama, T. (1986). Variation and geographical distribution of varieties for flooding tolerance in barley seeds.
Taylor, R. M., Fenn, L. B., & Pety, C. A. (1987). 15Nitrogen uptake by grapes with divided roots growing in differentially salinized soils.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527.
Tewari, S., & Mishra, A. (2018). Flooding stress in plants and approaches to overcome. In Plant metabolites and regulation under environmental stress (pp. 355-366). Academic Press.
Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant, Cell & Environment, 18(7), 801-806.
Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant, Cell & Environment, 18(7), 801-806.
Timmusk, S., Kim, S. B., Nevo, E., Abd El Daim, I., Ek, B. O., Bergquist, J., & Behers, L. (2015). Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Frontiers in microbiology, 6, 387.
Tozlu, I., Guy, C. L., & Moore, G. A. (1999). QTL analysis of Na+ and Cl-accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome, 42(4), 692-705.
Tuna, A. L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., & Yagmur, B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59(2), 173-178.
Varadachari, C., & Goertz, H. M. (2010). Slow-release and controlled-release nitrogen fertilizers. Indian Nitrogen Group, Society.
Vinh, N. T., & Paterson, A. H. (2005). for Improving Stress Resistance in Plants. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches, 1752.
Wani, S. H., Choudhary, M., Kumar, P., Akram, N. A., Surekha, C., Ahmad, P., & Gosal, S. S. (2018). Marker-assisted breeding for abiotic stress tolerance in crop plants. Biotechnologies of Crop Improvement, Volume 3: Genomic Approaches, 1-23.
Wójcik, M., & Tukiendorf, A. (2011). Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biologia plantarum, 55, 125-132.
Wojcik, P. (2004). Uptake of mineral nutrients from foliar fertilization.
Wu, X., Tang, Y., Li, C., McHugh, A. D., Li, Z., & Wu, C. (2018). Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research, 215, 163-172.
Xiao YuPing, X. Y., Wei Kang, W. K., Chen JinXin, C. J., Zhou MeiXue, Z. M., & Zhang GuoPing, Z. G. (2007). Genotypic difference in growth inhibition and yield loss of barley under waterlogging stress.
Yadav, T., Kumar, A., Yadav, R. K., Yadav, G., Kumar, R., & Kushwaha, M. (2020). Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi Journal of Biological Sciences, 27(8), 2010-2017.
Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217(4566), 1214-1222.
Yoshida, R., Hotta, Y., Tanaka, T., Tkeuchi, Y., and Konnai, M. (1996a). Promotive effects of 5-aminolevulinic acid on rice plants. Crop Res. Asia: Achiev. Perspective (ACSA) 524–525.
Yu, X., Peng, Y. H., Zhang, M. H., Shao, Y. J., Su, W. A., & Tang, Z. C. (2006). Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Research, 16(6), 599-608.
Zhang, X., Fan, Y., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., ... & Zhou, M. (2017). A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theoretical and Applied Genetics, 130, 1559-1568.
Zheng, W., Xue, D., Li, X., Deng, Y., Rui, J., Feng, K., & Wang, Z. L. (2017). The responses and adaptations of microbial communities to salinity in farmland soils: a molecular ecological network analysis. Applied Soil Ecology, 120, 239-246.
Zhou, M. (2010). Improvement of plant waterlogging tolerance. Waterlogging signalling and tolerance in plants, 267-285.
Zhou, M. X., Li, H. B., & Mendham, N. J. (2007). Combining ability of waterlogging tolerance in barley. Crop Science, 47(1), 278-284.
Zhu, J. K. (2001). Overexpression of delta-pyrroline-5-caboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice.
Anil, V. S., Krishnamurthy, P., Kuruvilla, S., Sucharitha, K., Thomas, G., & Mathew, M. K. (2005). Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiologia Plantarum, 124(4), 451-464.
Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14, 1110622.
Downloads
Submitted
Published
Issue
Section
License
Journal of Soil Salinity and Water Quality serves as an official organ of the Indian Society of Soil Salinity and Water Quality (ISSSWQ) for the publication of research papers, reviews, and short communications as per the constitution and by-laws of the society. Soft and hard copy of the journal are sent free to all its members. All disputes are subject to the exclusive jurisdiction of competent court and forums in Kamal only. The society does not assume any responsibility for opinion by the authors in the articles and no-material in any form can be reproduced without the prior permission of the society. The society is not responsible for any delay, whatsoever, in publication/ delivery of the periodicals to the subscribers due to unforeseen circumstances or postal delay. The society does not vouch for any claims made by the advertisers of products and services. The publisher and the editors shall not be held liable for any consequences in the event of such claim not being honoured by the advertisers.