ANALYSIS OF CAROTENOIDS METABOLISMGENES LANDSCAPE IN POTATO AND CLONING OF ZEAXANTHIN EPOXIDASE GENE


173 / 178

Authors

  • Som Dutt ICAR-CPRI, Shimla
  • Kalpana Devi
  • Mamta Chauhan
  • Pinky Raigond
  • Dharmendra Kumar
  • Milan Kumar Lal
  • Arvind Kumar Jaiswal
  • Bandana
  • Devendra Kumar
  • Satish Kumar Luthra
  • Dinesh Kumar
  • Brajesh Singh

Keywords:

Genome-wide, genome editing, introns, gene structure, genetic engineering

Abstract

Genome-wide identification of all the genes involved in carotenoids biosynthesis were carried out in silico
using potato genome sequence. Of the 12 genes analysed [geranylgeranyl pyrophosphate synthase (GGPS), phytoene synthase
(PSY), f-carotene desaturase (ZDS), carotenoid isomerise (CRTISO), lycopene ε-cyclase (LCY-ε), lycopene β-cyclase (LCY-β),
β-carotene hydroxylase (CHY-β), violaxanthin de-epoxidase (VDE), zeaxanthin epoxidase (ZEP), neoxanthin synthase (NXS),
carotenoid cleavage dioxygenase (CCD), 9-cisepoxycarotenoids dioxygenase (NCED)]; three genes namely ZDS, CRTISO
and LCY-ε was found as single gene, on chromosome 1, 10 and 12, respectively. GGPS (chromosomes 4 & 11), LCY-β
(chromosomes 4 & 10), CHY-β (chromosomes 3& 6) had two genes each. VDE (chromosome 4), NXS (chromosomes 2, 3 &
6) and NCED (chromosome 5, 7 & 8) showed presence of 3, 4 and 5 genes, respectively. CCD (chromosome 1 7 & 8) and
PSY (chromosomes 2, 3, 4, 8 & 12) had six genes each in potato genome. These carotenoid biosynthesis genes differed in
terms of number of introns, length of open reading frame, molecular weight and isoelectric points of deduced proteins,
secondary structure composition etc. This information generated about genes and proteins of carotenoids biosynthesis
pathway in potato may be very crucial and of vital utility for genome editing mediated interventions for enhancing total/
targeted carotenoids content in potato. Further, ZEP was cloned full length. The complete ORF of cloned ZEP was 2010
nucleotides long and encoding a protein having 669 amino acids (NCBI acc no. MK852682). It exhibited variations at 9 amino
acid positions when compared with the one available in potato genome sequence database. These variations at 9 amino
acids might provide some uniqueness to the cloned gene which might be involved in regulation of carotenoid biosynthesis
pathway especially beta-carotene, violaxanthin, zeaxanthin carotenoids etc.

Downloads

Download data is not yet available.

References

Akua T, Shaul O (2013). The Arabidopsis thaliana MHX

gene includes an intronic element that boosts

translation when localized in a 5’ UTR intron. J Exp

Bot. 64:4255-4270.

Bahadori S, Giglou MT, Esmaielpour B, Dehdar B,

Estaji A, Hano C, Gohari G, Vergine M, Vita F

(2023). Antioxidant compounds of potato breeding

genotypes and commercial cultivars with yellow,

light Yellow, and white flesh in Iran. Plants. 12:1707.

Bonierbale, M., W. Grüneberg, W. Amoros, G. Burgos,

E. Salas, E. Porras, and T. ZumFelde (2009). Total

and individual carotenoid profiles in Solanum

phureja cultivated potatoes: II. Development

and application of near-infrared reflectance

spectroscopy (NIRS) calibrations for germplasm

characterization. Journal of Food Composition and

Analysis 22: 509-516.

Brown CR, Culley D, Yang C, Durst R, Wrolstad R (2005).

Variation of anthocyanins and carotenoid contents

and associated antioxidant values in potato breeding

lines. Journal of the American Society for Horticultural

Science 130:174-80.

Burgos G, Salas E, Amoros W, Auqui M, Munoa

L., Kimura M, Bonierbale M (2009). Total and

individual carotenoid profiles in Solanum phureja

of cultivated potatoes: I. Concentrations and

relationships as determined by spectrophotometry

and HPLC. Journal of Food Composition and Analysis

: 503-508.

Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano

A, Marchesini G (2018). The effect of lutein on eye

and extra-eye health. Nutrients. 10:1321.

Cazzonelli CI, Pogson BJ (2010). Source to sink: regulation

of carotenoid biosynthesis in plants. Trends Plant

Sci.15:266-274.

Cazzonelli CI (2011). Carotenoids in nature: insights

from plants and beyond. Funct. Plant Biol. 38:833-

Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer

P, Giuliano G (2007). Metabolic engineering of

potato carotenoid content through tuber-specific

overexpression of a bacterial mini-pathway. PLoS

ONE 2: e350.

Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini

D, Beyer P, Giuliano G (2007). Silencing of betacarotene

hydroxylase increases total carotenoid

and beta-carotene levels in potato tubers. BMC

Plant Biol 2:7-11.

Ducreux LJ, Morris WL, Hedley PE, Shepherd T,

Davies HV, Millam S, Taylor MA (2005). Metabolic

engineering of high carotenoid potato tubers

containing enhanced levels of beta-carotene and

lutein. J Exp Bot 56:81-89.

Eggersdorfer M, Wyss A (2018). Carotenoids in human

nutrition and health. Arch BiochemBiophys. 652:18-

Fiedor J, Burda K (2014). Potential role of carotenoids as

antioxidants in human health and disease. Nutrients

:466-488.

Hamouz KK, Pazderu J, Lachman J, Cepl, and Z. Kotikova

(2016). Effect of cultivar, flesh colour, locality and

year on carotenoid content in potato tubers. Plant,

Soil and Environment 62 (2): 86–91.

Hamouz K, Pazderu K, Lachman J, Cepl J, Kotikova Z

(2016). Effect of cultivar, flesh colour, locality and

year on carotenoid content in potato tubers. Plant

Soil Environ. 62:86-91.

Kotikova Z, Hejtmankova A, Lachman J, Hamouz K,

Trnkova E, Dvorak P (2007). Effect of selected factors on total carotenoid content in potato tubers

(Solanum tuberosum L.). Plant Soil and Environment

: 355.

Leman, JK, Mueller R, Karakas M, Woetzel N, Meiler J

(2013). Simultaneous prediction of protein secondary

structure and transmembrane spans. Proteins

:1127-1140.

Lima VC, Rosen RB, Farah MI (2016). Macular pigment in

retinal health and disease. Int. J. Retina Vitreous.2:19.

Van Bel M, Silvestri F, Weitz EM, Kreft L, Botzki A,

Coppens F, Vandepoele K (2022). PLAZA 5.0:

extending the scope and power of comparative

and functional genomics in plants. Nucleic Acids

Res.50:D1468-D1474.

Montgomerie S, Cruz JA, Shrivastava S, Arndt D,

Berjanskii M, Wishart DS (2008). PROTEUS2: a

web server for comprehensive protein structure

prediction and structure-based annotation. Nucleic

Acids Res. 36(Web Server issue):W202-9.

Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA

(2006). Engineering ketocarotenoid biosynthesis in

potato tubers. Metab Eng 8:253-263.

Pasare S, Wright K, Campbell R, Morris W, Ducreux L,

Chapman S, Bramley P, Fraser P, Roberts A, Taylor

M (2013). The sub-cellular localisation of the potato

(Solanum tuberosum L.) carotenoid biosynthetic

enzymes, CrtRb2 and PSY2. Protoplasma 250:1381-1392.

Potato Genome Sequencing Consortium; Xu X, Pan S,

Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li

R, Wang J, Orjeda G, Guzman F, Torres M, Lozano

R, Ponce O, Martinez D, De la Cruz G, Chakrabarti

SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin

NV, Kolganova TV, Beletsky AV, Mardanov AV,

Di Genova A, Bolser DM, Martin DM, Li G, Yang

Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo

B, Mejía N, Zagorski W, Gromadka R, Gawor J,

Szczesny P, Huang S, Zhang Z, Liang C, He J,

Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D,

Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano

G, Pietrella M, Perrotta G, Facella P, O’Brien K,

Feingold SE, Barreiro LE, Massa GA, Diambra

L, Whitty BR, Vaillancourt B, Lin H, Massa AN,

Geoffroy M, Lundback S, DellaPenna D, Buell

CR, Sharma SK, Marshall DF, Waugh R, Bryan

GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JM, Nielsen KL, Sønderkær M,

Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem

CW, de Boer J, Borm T, Kloosterman B, van Eck

H, Datema E, HekkertBt, Goverse A, van Ham RC,

Visser RG (2011). Genome sequence and analysis

of the tuber crop potato. Nature 475:189-195.

Rodríguez-Concepción M, Boronat A (2002). Elucidation

of the methylerythritol phosphate pathway for

isoprenoid biosynthesis in bacteria and plastids. A

metabolic milestone achieved through genomics.

Plant Physiol. 130:1079-1089.

Romer S, Lubeck J, Kauder F, Steiger S, Adomat C,

Sandmann G (2002). Genetic engineering of a

zeaxanthin-rich potato by antisense inactivation and

co-suppression of carotenoid epoxidation. Metab

Eng 4:263-272.

Ruiz-Sola MA, Rodríguez-Concepcion M (2012).

Carotenoid biosynthesis in Arabidopsis: a colorful

pathway. Arabidopsis Book. 10:e0158.

Shaul O (2017). How introns enhance gene expression.

Int J Biochem Cell Biol. 91:145-155.

Tapiero H., Townsend D.M., Tew K.D (2004). The role of

carotenoids in the prevention of human pathologies.

Biomed. Pharmacother. 58:100-110

Tatarowska B, Milczarek D, Wszelaczyńska E, Pobereżny

J, Keutgen N, Keutgen AJ, Flis B (2019). Carotenoids

variability of potato tubers in relation to genotype,

growing location and year. American Journal of Potato

Research 96:493-504.

Valcarcel J, Reilly K, Gaffney M, O’Brien NM (2016).

Levels of potential bioactive compounds including

carotenoids, vitamin C and phenolic compounds,

and expression of their cognate biosynthetic genes

vary significantly in different varieties of potato

(Solanum tuberosum L.) grown under uniform cultural

conditions. J Sci Food Agric. 96:1018-1026.

Walter MH, Strack D (2011). Carotenoids and their

cleavage products: biosynthesis and functions. Nat

Prod Rep. 28:663-692.

Xu J, Li Y, Kaur L, Singh J, Zeng F (2023). Functional

Food Based on Potato. Foods 12: 2145.

Downloads

Submitted

2023-06-22

Published

2024-04-04

How to Cite

Devi, K., Chauhan, M., Raigond, P. ., Kumar, D. ., Lal, M. K. ., Jaiswal, A. K., Bandana, Kumar, D., Luthra, S. K. ., Kumar, D., & Singh, B. (2024). ANALYSIS OF CAROTENOIDS METABOLISMGENES LANDSCAPE IN POTATO AND CLONING OF ZEAXANTHIN EPOXIDASE GENE. Potato Journal, 50(2). https://epubs.icar.org.in/index.php/PotatoJ/article/view/138194