NANOTECHNOLOGY APPLICATIONS AND POTENTIAL IN PARASITOLOGY: AN OVERVIEW


377 / 13 / 19

Authors

  • Kandayath Muraleedharan Professor and University Head of Veterinary Parasitology (Retired), University of Agricultural Sciences, Bengaluru-560 065, India
  • Manmohan Chhabra Professor and Head (Retired), Department of Parasitology, College of Veterinary Sciences, Hisar-125004, Haryana, India

Keywords:

Nanotechnology, Nanoparticles, Nanomedicine, Parasitic diseases, Drug delivery systems, Diagnosis, Vaccine

Abstract

Nanotechnology is an emerging field of science, which deals with synthesis, strategy and manipulation of particle’s size and structure for a variety of applications. Therapeutic application of nanomedicine involves use of molecular tools in the development of various types of drug-carrier nano-devices as targeted delivering for control of infectious diseases of various etiologies. Among other applications, improved means of diagnosis and development of adjuvants for vaccination are also relevant. The use of nanotechnology in parasitic diseases is expected to open new opportunities by overcoming the increasing problem of drug resistance in several parasites by providing more effective and safer alternatives to traditional therapy. Researchers have indicated that among various nano-materials, oxidized metals particularly silver and gold have growth inhibitory or cytotoxic effect on several protozoans like Plasmodium, Leishmania and Toxoplasma and helminth parasites including Echinococcus, Fasciola and Schistosoma. Nanoparticles (NPs) in combination with current drugs have been used as anti-protozoan and anthelmintic activates. In green synthesis, some bio-active plant extracts have shown good potential for effective and safe control of arthropod vectors of disease and other parasites. In diagnosis of parasitic disease, the concept of NPs conjugation with the parasite biomarkers, has been shown sensitive in the early detection of especially important protozoan diseases. NPs have been shown to act as vaccine candidates against toxoplasmosis and malaria, as adjuvant to improve immune response against schistosomiasis, visceral leishmaniasis and coccidiosis. Their utility as a vaccine delivery system in parasitic diseases is also being investigated.

References

Abamor ES, Allahverdiyev AM, Bagirova M, Rafailovich M (2017) Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Trop 169: 30-42.

Adesuji ET, Oluwaniyi OO, Adegoke HI, Moodley R, Labulo AH et al. (2016) Investigation of the larvicidal potential of silver nanoparticles against Culex quinquefasciatus: A case of a ubiquitous weed as a useful bioresource. J Nanomater http://dx.doi.org/10.1155/2016/ 4363751.

Adeyemi OS, Murata Y, Sugia T, Kato K (2017) Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Inter J Nanomed 12: 1647-1661.

Adeyemi OS, Whiteley CG (2013) Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation. Inter J Biol Macromol 62: 450-456.

Ahmed ZA, Mustafa TA, Ardalan NM, Idan EM (2017) In vitro toxicity evaluation of silver nanoparticles on Entamoeba histolytica trophozoite. Baghdad Sci J 14: 509-512.

Akhtar F, Kar SK (2012) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30: 310-320.

Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C et al. (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Inter J Nanomed 6: 2705-2714.

Aly I, Taher EE, El Nain G, El Sayed H, Mohammed FA et al. (2018) Advantages of bioconjugated silica-coated nanoparticles as an innovative diagnosis for human toxoplasmosis. Acta Trop 177: 19-24.

Andreadou M, Liandris E, Gazouli M, Taka S, Antoniou M et al. (2014) A novel non-amplification assay for the detection of Leishmania spp. in clinical samples using gold nanoparticles. J Microbiol Methods 96: 56-61.

Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J et al. (2015) Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release 197: 190-198.

Arjunan NK, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on ï¬larial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112: 1053-1063.

Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne and Zoonotic Dis 12: 262-268.

Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK (2013) Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother 57: 1714-1722.

Balakrishnan S, Srinivasan M, Mohanraj J (2016) Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J Parasit Dis 40: 991-996.

Baldissera MD, Souza CF, Grando TH, Dolci GS (2017) Nerolidol-loaded nanospheres prevent hepatic oxidative stress of mice infected by Trypanosoma evansi. Parasitology 144: 148-157.

Banumathi B, Malaikozhundan B, Vaseeharan B (2016) In vitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus. Vet Parasitol 216: 93-100.

Banumathi B, Vaseeharan B, Malaikozhundan B, Ramasamy P, Govindarajan M. et al (2017) Green larvicides against blowflies, Lucilia sericata (Diptera, Calliphoridae): Screening of seven plants used in Indian ethno-veterinary medicine and production of green-coated zinc oxide nanoparticles Physiol Molec Plant Pathol. https://doi.org/10.1016/j.pmpp.2017.02.003

Barrera MG, Leonardi D, Bolmaro RE, Echenique CG, Olivieri AC et al. (2010) In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur J Pharm Biopharm 75: 451-454.

Cameron P, Gaiser BK, Bhandari B, Bartley PM, Katzer F, Bridle H (2016) Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol 82: 431-437.

Charoensuk L, Pinlaor P, Wanichwecharungruang S, Intuyod K, Vaeteewoottacharn K et al. (2016) Nanoencapsulated curcumin and praziquantel treatment reduces periductal fibrosis and attenuates bile canalicular abnormalities in Opisthorchis viverrini-infected hamsters. Nanomed 12: 21-32.

Chaubey P, Mishra B (2014) Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym 101: 1101-1108.

Cheung YW, Kwok J, Law AW, Watt RM, Kotaka M, Tanner JA (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci USA 110:15967-15972.

Chhabra M B, Muraleedharan K, Pathak K M L (2014) Medicinal plants as alternative for control of parasites. 3. Arthropods. Indian J Anim Sci 84: 927-938.

Chhabra M B, Pathak K M L, Muraleedharan K (2014) Medicinal plants as alternative for control of livestock parasites. 2. Protozoa. Indian J Anim Sci 84: 599-608.

de Carvalho RF, Ribeiro IF, Miranda-Vilela AL, Souza Filho J, Martins OP et al. (2013) Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol 135: 217-222.

Deckers N, Saerens D, Kanobana K, Conrath K, Victor B et al. (2009) Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. Inter J Parasitol 39: 625-633.

Demin AM, Pershina AG, Ivanov VV, Nevskaya KV, Ogorodova LM (2016) 3-aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus. Inter J Nanomed 11: 4451-4463.

Dkhil MA, Al-Quraishy S, Wahab R (2015a) Anticoccidial and antioxidant activities of zinc oxide nanoparticles on Eimeria papillata-induced infection in the jejunum. Inter J Nanomed 10: 1961-1968.

Dkhil MA, BauomyAA, Diab MSM and Al-Quraishy S (2015b) Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis. Inter J Nanomed 10: 7467-7475.

Dkhil MA, BauomyAA, Diab MSM, Al-Quraishy S (2016) Protective role of selenium nanoparticles against Schistosoma mansoni induced hepatic injury in mice. Biomed Res 27: 214-219.

Dkhil MA, Khalil MF, Diab MSM, Bauomy AA, Al-Quraishy S (2017) Effect of gold nanoparticles on mice splenomegaly induced by Schistosomiasis mansoni. Saudi J Biol Sci 24: 1418-1423.

Dorostkar R, Ghalavand M, Nazarizadeh A, Tat M, Hashemzadeh MS (2017) Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int Nano Lett 7: 157–164.

EL Bissati, K, Zhou Y, Paulillo SM, Raman SK et al. (2017) Protein nanovaccine confers robust immunity against Toxoplasma. npj Vaccines 2 24 doi:10.1038/s41541-017-0024-6.

El-Feky GS, Mohamed WS, Nasr HE, El-Lakkany NM, el-Din SSH, Botros SS (2015) Praziquantel in a clay nano formulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection. Antimicrob Agents Chemother 59: 3501-3508.

Elumalai, D, Hemavathi M, Deepaa CV, Kaleena PK (2017) Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2: 15-16.

Foger F, Noonpakdee W, Loretz B, Joojuntr S, Salvenmoser W et al. (2006) Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Int J Pharm 319: 139-146.

Fuaad AA, Pearson MS, Pickering DA, Becker L, Zhao G et al. (2015) Lipopeptide nanoparticles: Development of vaccines against hookworm. ChemMedChem 10: 1647–1654.

Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143: 30-38.

Gandhi PR, Jayaseelan C, Mary RR, Mathivanan D, Suseem SR (2017) Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp Parasitol 181: 47-56.

Gandhi PR, Jayaseelan C, Vimalkumar E, Mary RR (2016) Larvicidal and pediculicidal activity of synthesized TiO2 nanoparticles using Vitex negundo leaf extract against blood feeding parasites. J Asia-Pacific Entomol 19: 1089-1094.

Gherbawy YA, Shalaby IM, El-sadekMSA, Elhariry HM, Banaja AEA (2013) The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole. Int J Mol Sci 14: 21887-21898.

Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V et al. (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 4: 799-803.

Grando TH, de Sá MF, Baldissera MD, Oliveira CB, de Souza ME et al. O (2015) In vitro activity of essential oils of free and nanostructured Melaleuca alternifolia and of terpinen-4-ol on eggs and larvae of Haemonchus contortus. J Helminthol 90: 377-382.

Guirgis BS, Cunha CS, Gomes I, Cavadas M, Silva I, Doria G et al. (2012) Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. ‎Anal Bioanal Chem 402: 1019-1027.

Haas SE, Bettoni CC, de Oliveira LK, Guterres SS, Dalla Costa T (2009) Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int J Antimicrob Agents 34:156-161.

Haldar KM, Haldar B, Goutam C (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112: 1451–1459.

Hemadi A, Ekrami A, Oormazdi H, Meamar AR, Akhlaghi L et al. (2015) Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica. Acta Trop 145: 26-30.

Irache JM, Esparza I, Gamazo C, Agüeros M and Espuelas S (2011) Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 180: 47-71.

Jahani Z, Meshgi B, Rajabi-Bzl M, Jalousian F, Hasheminasab S (2014) Improved serodiagnosis of hydatid cyst disease using gold nanoparticle labeled antigen b in naturally infected sheep. Iran J Parasitol 9: 218-225.

Javier DJ, Castellanos-Gonzalez A, Weigum SE, White Jr. AC, Richards-Kortum R (2009) Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA. J Clin Microbiol 47: 4060-4066.

Jayaseelan C, Rahuman AA (2012) Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitol Res 111: 1369-1378.

Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV et al. (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111: 921-933.

Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T et al. (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109: 185-194.

Jeon W, Lee S, Manjunatha DH, Ban C (2013) A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal Biochem 439: 11-16.

Kaba SA, Karch CP, Seth L, Ferlez KMB, Strome CK et al. (2018) Self-assembling protein nanoparticles with built-in flagellin domains increases protective efficacy of a Plasmodium falciparum based vaccine. Vaccine 36: 906-914.

Kaba SA, McCoy ME, Doll TA, Brando C, Guo Q, Dasgupta D, et al.(2012) Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PloS One, 7 (2012), p. e48304.

Kamaraj C, Rajakumar G, Rahuman AA, Velayutham K, Bagavan A, et al. (2012) Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol Res 111: 2439-2448.

Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1): e84693. https://doi.org/10.1371/journal.pone.0084693

Khan YA, Singh BR, Ullah R, Shoeb M, Naqvi AH, Abidi SMA (2015) Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One 2015; 10(7): e0133086.

Kroubi M, Daulouede S, Karembe H, Jallouli Y, Howsam M et al. (2010) Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotech 21: 505102. doi: 10.1088/0957-4484/21/50/505102.

Kudtarkar A, Shinde U, Bharkad GP, Singh K (2017) Solid lipid nanoparticles of albendazole for treatment of Toxocara canis infection: in-vivo efficacy studies. Nanosci Nanotechnol Asia 7: 80-91.

Kunjachan S, Gupta S, Dwivedi AK, Dube A and Chourasia MK (2011) Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. J Microencapsul 28: 301-310.

Kunjachan S, Jose S, Thomas CA, Joseph E, Kiessling F, Lammers T (2012) Physicochemical and biological aspects of macrophage-mediated drug targeting in anti-microbial therapy. Fundam Clin Pharmacol 26: 63-71.

Leite EA, Grabe-Guimarães A, Guimarães HN, Machado-Coelho GL, Barratt G, MosqueriaVCF (2007) Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 80: 1327-1334.

Luzardo AA, García EB, Callejas FG, Couso HG, Méndez JB (2012) In vitro evaluation of the suppressive effect of chitosan/poly(vinyl alcohol) microspheres on attachment of C. parvum to enterocytic cells. Eur J Pharm Sci 47: 215-227.

Mahmoudvand H, Harandi MF, Shakibaie M, Aflatoonian MR, ZiaAli N et al. (2014) Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int J Surg 12: 399-403.

Marimuthu S, Rahuman A A, Jayaseelan C, Vishnu Kirthi A,Santhosh Kumar T et al. (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. 6: 682-688. Asian Pac J Trop Med 6: 682-688.

Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV et al. (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108: 1541-1549.

Marimuthu S, Rahuman AA, Santhoshkumar T, Jayaseelan C, Kirthi AV et al. (2012) Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis. Parasitol Res 111: 2023-2033.

Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C et al. (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114: 2243-2253.

Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U et al. (2015b) Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 102: 127-135.

Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U et al. (2016) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106: 14-22.

Nahar M, Jain NK (2009) Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26: 2588-2598.

Oliveira CB, Rigo LA, Rosa AD, Gressler LT (2014) Liposomes produced by reverse phase evaporation: in vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi. Parasitology 141: 761-769.

Oliveira CR, Rezende CM, Silva MR, Pêgo AP, Borges O, Goes AM (2012) A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLOS Negl Trop Dis 6:e1894.

Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U et al. (2016) Fern-synthesnanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosyntheogy. Parasitol Res 115: 997-1013.

Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3: 208-217.

Pathak K M L, Chhabra M B (2014) Medicinal plants as alternative to anthelmintics for livestock: An overview with particular reference to Indian subcontinent. Indian J Anim Sci 84: 335-349.

Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111: 555-562.

Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110: 1815-1822.

Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific J Trop Biomed, 2: 574-580.

Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica – a most effective method for mosquito control. Environ Sci Pollut Res Inter 22: 2956-2963.

Preet S, Tomar RS (2017) Anthelmintic effect of biofabricated silver nanoparticles using Ziziphus jujuba leaf extract on nutritional status of Haemonchus contortus. Small Rumin Res 154: 45-51.

Rahimi MT, Ahmadpour E, Esboei BR, Spotin A, Koshki MHK et al. (2015) Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int J Surg 19: 128-133.

Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118: 196-203.

Rajakumar G, Abdul Rahuman A (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93: 303-309.

Rajakumar G, Rahuman A A, Roopan S M, Chung I M, Ambarasan K, Karthikeyan V (2015 Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res 114: 571-581.

Rajakumar G, Rahuman AA, Jayaseelan C, Santhoshkumar T, Marimuthu S et al. (2014) Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res 113: 469-479.

Rajasekharreddy P, Rani PU (2014) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. ‎Mater Sci Eng C 39: 203-212.

Raman N, Sudharsan S, Veerakumar V, Pravin N, Vithiya K (2012) Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 96: 1031-1037.

Ramesh Kumar K, Nattuthurai N, Gopinath P, Mariappan T (2014a) Biosynthesis of silver nanoparticles from Morinda tinctoria leaf extract and their larvicidal activity against Aedes aegypti Linnaeus 1762.J. Nanomed Nanotechnol 5: 242. doi:10.4172/2157-7439.1000242, pp 1-5.

Ramesh Kumar K, Nattuthurai N, Gopinath P, Mariappan T (2014b) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res DOI 10.1007/s00436-014-4198-9.

Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128: 613-622.

Ribeiro WLC, Camurça-Vasconcelos ALF, dos Santos JML, Macedo ITF, Ribeiro JC et al. (2017) The use of Eucalyptus staigeriana nanoemulsion for control of sheep haemonchosis. Pesquisa Veterinária Brasileira 37: 221-226.

Saad HA, Soliman MI, Azzam AM, Mostafa B (2015) Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. J Egypt Soc Parasitol 45: 593-602.

Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111: 545-554.

Saini P, Saha SK, Roy P, Chowdhury P, Sinha Babu SP (2016) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol 160: 39-48.

Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol 132: 156-165.

Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A et al. (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108: 693-702.

Sedighi F, Abbasali Pourkabir R, Maghsood A, Fallah M (2016) Comparison of therapeutic effect of anti-Cryptosporidium nano-nitazoxanide (ntz) with free form of this drug in neonatal rat. Sci J Hamadan Univ Med Sci 23: 134-140.

Shukla S, Arora V, Jadaun A, Kumar J, Singh N, Jain VK (2015) Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles. Inter J Nanomed 10: 4901-4917.

Singh SK, Goswami K, Sharma RD, Reddy MVR, Dash D (2012) Novel microfilaricidal activity of nanosilver. Inter J Nanomed 7: 1023-1030.

Soni MP, Shelkar N, Gaikwad RV, Vanage GR, Samad A, Devarajan PV (2014) Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theileriosis. J Pharm Bioallied Sci 6: 22-30.

Sousa-Batista AJ, Poletto FS, Philipon CIMS, Guterres SS, Pohlmann AR, Rossi-Bergmann B (2017) Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 144: 1769-1774.

Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113: 875-880.

Suman TY, Rajasree SR, Jayaseelan C, Mary RR, Gayathri S et al. (2016) GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environ Sci Pollut Res Inter 23: 2705-2714.

Sundaravadivelan C, Nalini Padmanabhan M, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112: 303-311.

Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D et al. (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127: 61-66.

Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR et al. (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114: 1551-1562.

Tiwari B, Pahuja R, Kumar P, Rath SK, Gupta KC, Goyal N (2017) Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother 61: e01169-16.

Tomar RS, Preet S (2017) Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J Helminthol 91: 454-461.

Tripathy S, Mahapatra SK, Chattopadhyay S, Das S, Dash SK et al. (2013) Novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 128: 494-503.

Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S et al. (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111: 2329-2337.

Wang H, Lei C, Li J, Wu Z, Shen G, Yu R (2004) Piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosens Bioelectron 19: 701-709.

Want MY, Islamuddin M, Chouhan G, Ozbak HA, Hemeg HA et al. (2015) Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf B: Biointerfaces 130: 215-221.

Weigum, S. E. A. Castellanos-Gonzalez, A. C. White, Jr., Richards-Kortum R (2013) Amplification-fee detection of Cryptosporidium parvum nucleic acids using DNA/RNA-directed gold nanoparticle assemblies. J Parasitol 99: 923-926.

Wu J, Peng Y, Liu X, Li W, Tang S (2014) Evaluation of wondfo rapid diagnostic kit (Pf-HRP2/PAN-pLDH) for diagnosis of malaria by using nano-gold immunochromatographic assay. Acta Parasitol 59: 267-271.

Xie S, Pan B, Shi B, Zhang Z, Zhang X et al. (2001) Solid lipid nanmoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm. Inter J Nanomed 6: 2367-2374.

Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G et al. (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59: 4782-4799.

Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis binvestigated on ispinosa and Hippobosca maculata. Vet Parasitol 187: 511-520.

Zanin H, Margraf-Ferreira A, da Silva NS, Marciano FR, Corat EJ, Lobo AO ( 2014) Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Mater Sci Eng C Mates Biol Appl 41: 65-69.

Zhang DF, Xu H, Sun BB, Li JQ, Zhou QJ et al. (2012) Adjuvant effect of ginsenoside-based nanoparticles (ginsomes) on the recombinant vaccine against Eimeria tenella in chickens. Parasitol Res 110: 2445-2453.

Downloads

Submitted

2018-03-08

Published

2019-05-22

How to Cite

Muraleedharan, K., & Chhabra, M. (2019). NANOTECHNOLOGY APPLICATIONS AND POTENTIAL IN PARASITOLOGY: AN OVERVIEW. ISVIB Journal Veterinary Immunology & Biotechnology, 1(1). https://epubs.icar.org.in/index.php/VIB/article/view/76776