Levels of the Enterolobium cyclocarpum pod in feedlot diet on growth performance, ruminal fermentation and biogas production of lambs-hair


Abstract views: 191 / PDF downloads: 66

Authors

  • SERAFÍN J LÓPEZ-GARRIDO Universidad del Mar, Puerto Escondido 59080, Oaxaca, México
  • ALDO A SALAZAR-MENDOZA Universidad del Mar, Puerto Escondido 59080, Oaxaca, México
  • MÓNICA M GALICIA-JIMENEZ Universidad del Mar, Puerto Escondido 59080, Oaxaca, México
  • MARCO A CAMACHO-ESCOBAR Universidad del Mar, Puerto Escondido 59080, Oaxaca, México
  • NARCISO Y ÁVILA-SERRANO Universidad del Mar, Puerto Escondido 59080, Oaxaca, México
  • J EFRÉN RAMÍREZ-BRIBIESCA Universidad del Mar, Puerto Escondido 59080, Oaxaca, México

https://doi.org/10.56093/ijans.v90i4.104217

Keywords:

Methane, Rumen, Ruminal microorganisms, Volatile fatty acid

Abstract

Enterolobium cyclocarpum (Ec) is a native legume that grows from southern Mexico to South America; its seeds are traditionally used for feeding ruminants. The objective of this study was to evaluate the addition of Ec pods in diets of hair lambs and their effect on the productive variables, ruminal fermentation and in vitro production of methane (CH4) and carbon dioxide. Thirty male lambs fed diets containing 0% (Ec0), 20% (Ec20) and 40% (Ec40) based on dry matter were evaluated. The addition of Ec40 in the integral diet of the lambs did not affect the growth performance. The pH of the ruminal fluid did not show differences between the treatments. The addition of Ec40 increased propionate and decreased acetate. Protozoa decreased in 47 and 59% with Ec20 and Ec40, respectively; while the population of cellulolytic bacteria decreased with Ec40. In vitro degradability of dry matter was lower in 8.8% with the inclusion of Ec40 in diets. The novelty of the study was that Ec40 diet decreased the ruminal methane production.

Downloads

Download data is not yet available.

References

Albores M S, Alayón J A G, AyalaA J B, Solorio F J S, Aguilar C F P, Olivera L C and Ku J C. 2017. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation and enteric methane production by Pelibuey sheep fed tropical grass. Tropical Animal and Health Production 49: 857–66. DOI: https://doi.org/10.1007/s11250-017-1275-y

Álvarez M G, Melgarejo V L and Castañeda N Y. 2003. Ganancia de peso, conversión y eficiencia alimentaria en ovinos alimentados con fruto (semilla con vaina) de parota [Enterolobium cyclocarpum] y pollinaza. Revista Veterinaria México 1: 40–46.

Anantosook A, Wanapat W and Cherdthong A. 2015. Effect of tannins and saponins in Samanea saman on rumen environment, milk yield and milk composition in lactating dairy cows. Journal of Animal Physiology and Animal Nutrition 99: 335–44. DOI: https://doi.org/10.1111/jpn.12198

AOAC. 2005. Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.

Archimède H, Martin C, Periacarpin F, Rochette Y, Silou T, Etienne C and Doreau M. 2014. Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. Hay. Animal Feed Science and Technology 190: 30–37. DOI: https://doi.org/10.1016/j.anifeedsci.2014.01.004

Barrientos L, Vargas J J, Segura M, Manríquez R and López F A. 2015. Nutritional evaluation of mature sedes of Enterolobium cyclocarpum [parota] from diverse ecological zones in western Mexico. Bosque 36: 95–1003. DOI: https://doi.org/10.4067/S0717-92002015000100010

Briceño-Poot E G, Ruiz-González A, Chay-Canul A J, Ayala- Burgos A J, Aguilar-Pérez C F, Solorio-Sánchez F J and Ku- Vera J C. 2012. Voluntary intake, apparent digestibility and prediction of methane production by rumen stoichiometry in sheep fed pods of tropical legumes. Animal Feed Science and Technology 176: 117–22. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.014

Cobos M A and Yokoyama T. 1995. Clostridium paratrificum var. ruminantium: colonization and degradation of shrimp carapaces in vitro observed by scanning electron microscopy. (Eds) Wallace R J and Lahlou-kassi. Rumen ecology research planning. Proceedings of a workshop held at ILRI, Addis Abeba, Ethiopia. pp. 151–161.

Erwin E S, Marco G J and Emery E M. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44: 1768–71. DOI: https://doi.org/10.3168/jds.S0022-0302(61)89956-6

Esquivel M H, Piñeiro V A, Bazán J G, Ayala B A, Espinoza H J and Ku J C. 2010. Integration of Enterolobium cyclocarpum Jacq. Griseb tree with hair sheep production in the dry tropics. Advances Animal Bioscience 1: 444–45. DOI: https://doi.org/10.1017/S2040470010000683

Francis G, Kerem Z, Makkar H S and Becker K. 2002. The biological action of saponins in animal systems: A review. British Journal Nutrition 88: 587–605. DOI: https://doi.org/10.1079/BJN2002725

Galindo J, González N, Aldama A I and Marrero Y. 2001. Effect of Enterolobium cyclocarpum on rumen microbial population and its activity under in vitro conditions. Revista Cubana de Ciencia Agrícola 35: 229–37.

Harrigan W F and McCance E M. 1979. Métodos de laboratorio en microbiología de alimentos y productos lácteos. 1a ed. León España: Academia.

Hess H D, Kreuzer M, Díaz T E, Lascano C E, Carulla J E, Soliva C R and Machmuller A. 2003. Saponin rich tropical fruits affect fermentation and methano-genesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology 109: 79–94. DOI: https://doi.org/10.1016/S0377-8401(03)00212-8

Hungate R E. 1969. A roll tube method for cultivation of strict anaerobes. (Eds) Norris J R and Ribbons D W. Methods in Microbiology. 1st ed. Academic Press Inc., New York, USA. pp. 117–132. DOI: https://doi.org/10.1016/S0580-9517(08)70503-8

Ivan M, koenig K M, Teferedegne B, Newbold J C, Entz T, Rode L M and Ibrahim M. 2004. Effects of the dietary Enterolobium cyclocarpum foliage on the population dynamic of the rumen ciliate protozoa in sheep. Small Ruminant Research 52: 81– 91. DOI: https://doi.org/10.1016/S0921-4488(03)00230-X

Morgavi D P, Martin C, Jouany J P and Ranilla M J. 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationchip. British Journal of Nutrition 107: 388–97. DOI: https://doi.org/10.1017/S0007114511002935

Moscoso C, Velez M, Flores A and Agudelo N. 1995. Effects of Guanacaste tree [Enterolobium cyclocarpum Jacq. Griseb.] fruit as replacement for sorghum grain and cotton-seed meal in lamb diets. Small Ruminant Research 18: 121–24. DOI: https://doi.org/10.1016/0921-4488(95)00677-D

NRC. National Research Council. 2007. Nutriment Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. 384 p.

Patra A K and Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Review 22: 204–19. DOI: https://doi.org/10.1017/S0954422409990163

Patra A K and Saxena J. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71: 1198–1222. DOI: https://doi.org/10.1016/j.phytochem.2010.05.010

Peralta N, Palma J M and Macedo R. 2004. Efecto de diferentes niveles de inclusión de parota [Enterolobium cyclocarpum] en el desarrollo de ovinos en estabulación. Livestock Research Rural Development 16: 1–8.

Posada S and Noguera R R. 2005. In vitro gas production technique: A tool for evaluation of ruminant feeds. Livestock Research Rural Development 17: 1–19.

Ramírez R, Pizzani P, de Martino G, García D, Linares Z, Colmenares O and Domínguez C. 2012. Estimación in vitro de gases con efecto invernadero en frutos y follaje de árboles de un bosque seco tropical de Venezuela. Pastos y forrajes 35: 99–108.

Rea S, Bowman J P, Popovski S, Pimm C and Wright A D G. 2007. Methanobrevibactermillerae sp. and Methanobrevibacterolleyae sp, methanogens from the ovine and bovine rumen that can utilize formate for growth. International Journal System and Evolution of Microbiology 57: 450–56. DOI: https://doi.org/10.1099/ijs.0.63984-0

Saminathan M, Sieo C C, Wong C M and Ho Y W. 2015. Effects of condensaded tannin fraction of different molecular weigths from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation. Journal of the Science of Food and Agriculture 95: 2742–49. DOI: https://doi.org/10.1002/jsfa.7016

Santacoloma L A. 2011. Las dietas en las emisiones de metano durante el proceso de rumia en sistemas de producción bovina. RIAA 2: 55–64. DOI: https://doi.org/10.22490/21456453.913

NOM-062-ZOO. 1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. SAGARPA, México. 59 p.

SAS. 2011. Institute Inc. Statistical Analysis Systems, SAS User´s Guide: SAS Inst. Cary, NC. USA.

Serratos J C, Carreón J, Castañeda H, Garzón P and García J. 2008. Composición químico-nutricional y de factores antinutricionales en semillas de parota [Enterolobium cyclocarpum]. Interciencia 33: 850–54.

Sung W S and Lee D G. 2008. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biology Pharmaceutical Bulletin 31: 243–45. DOI: https://doi.org/10.1248/bpb.31.1614

Tiemman T T, Lascano C E, Kreuzer M and Hess H D. 2008. The ruminal degradability of fibre explains part of the low nutritional value and reduced metanogénesis in highlytanniniferous tropical legumes. Journal of the Sciences of Food and Agriculture 88: 1794–1803. DOI: https://doi.org/10.1002/jsfa.3282

Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–97. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vélez M, Campos R, Sánchez H and Giraldo L A. 2018. Dinámica de fermentación y producción de metano de dietas a base de Brachiaria humidicola con altos niveles de inclusión de Enterolobium schomburgkii [Benth] y Sennaoccidentalis en un sistema Rusitec. Tropical and Subtropical Agroecosystems 21: 163–75.

Wina E, Muetzel S and Becker K. 2005. The impact of saponins or saponin-containing plant materials on ruminant production. A review. Journal of Agriculture Food Chemistry 53: 8093– 8105. DOI: https://doi.org/10.1021/jf048053d

Yogianto A, Sudarman A, Wina E and Jayanegara A. 2014. Supplementation effects of tannin and saponin extracts to diets with different forage to concentrate ratio on in vitro rumen fermentation and methanogenesis. Journal Indonesian Tropic Animal Agriculture 39: 144–51. DOI: https://doi.org/10.14710/jitaa.39.3.144-151

Downloads

Submitted

2020-09-01

Published

2020-09-01

Issue

Section

Articles

How to Cite

LÓPEZ-GARRIDO, S. J., SALAZAR-MENDOZA, A. A., GALICIA-JIMENEZ, M. M., CAMACHO-ESCOBAR, M. A., ÁVILA-SERRANO, N. Y., & RAMÍREZ-BRIBIESCA, J. E. (2020). Levels of the Enterolobium cyclocarpum pod in feedlot diet on growth performance, ruminal fermentation and biogas production of lambs-hair. The Indian Journal of Animal Sciences, 90(4), 618-622. https://doi.org/10.56093/ijans.v90i4.104217
Citation