Phenotypic and molecular characterization of ESBLs producing Escherichia coli in bovine faecal and milk samples of North Gujarat


Abstract views: 227 / PDF downloads: 77

Authors

  • B I PRAJAPATI Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • K M SOLANKI Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • SARITA DEVI Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • B P KATIRA Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • S S PATEL Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • S H RAVAL Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India
  • R R MOMIN Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506 India

https://doi.org/10.56093/ijans.v90i7.106667

Keywords:

BlaTEM, Bovines, ESBLs producing E. coli, Mastitis milk, North Gujarat

Abstract

Extended-spectrum β-lactamases (ESBLs) producing E. coli seems to be emerging in veterinary science impacting major threat to public health due to resistance to golden age antibiotics. In this study a total of 109 samples (42 faecal and 67 mastitis milk) of bovines were collected from different regions of North Gujarat. The samples were cultured and identified by standard procedures. The screening for ESBLs production was performed by using Cefotaxime and Cefotaxime+Clavulanate (Combination disc screening method). A total of 71 E. coli isolates were recovered from 109 samples processed, out of which thirty (42.25%) isolates (17 from milk and 13 from faecal) were positive for ESBLs showing multiple resistance to the antibiotics used. The ESBL confirmed isolates were further processed for detection of blaCTX-M, blaTEM, and blaSHV genes. Major gene detected was blaTEM in 17 (23.94%) E. coli isolates. Antibiotic resistance pattern of E. coli isolates was studied against eleven commonly used antimicrobial drugs in the northern region of Gujarat. The results recorded resistance tofollowing antibiotics: tetracycline (100%), ampicillin/sulbactum (83.10%), amoxiclav and gentamicin (83.10%), chloramphenicol (57.74%), ceftriaxone (66.19%), cefoperazone (66.19%), ciprofloxacin (74.65%), amikacin (57.74%), enrofloxacin (74.65%) and, levofloxacin (74.65%).

Downloads

Download data is not yet available.

References

Aarestrup F M, Hasman H, Agerso Y, Jensen L B, Harksen S and Svensmark B. 2006. First description of blaCTX-M-1-carrying Escherichia coli isolates in Danish primary food production. Journal of Antimicrobial Chemotherapy 57: 1258–59. DOI: https://doi.org/10.1093/jac/dkl109

Ajayi A O, Oluyege A O, Olowe O A and Famurewa O. 2011. Antibiotic resistance among commensal Escherichia coli isolated from faeces of cattle in Ado-Ekiti, Nigeria. Journal of Animal and Veterinary Advances 10(2): 174–79. DOI: https://doi.org/10.3923/javaa.2011.174.179

Blanc V, Mesa R and Saco M. 2006. ESBL- and plasmidic class C b-lactamase producing E. coli strains isolated from poultry, pig and rabbit farms. Veterinary Microbiology 118: 299–21. DOI: https://doi.org/10.1016/j.vetmic.2006.08.002

Boyd D A, Tyler S, Christianson S, McGeer A and Muller M P. 2004. Complete nucleotide sequence of a 92-kilobase plasmid harbouring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrobial Agents and Chemotherapy 48(10): 3758–64. DOI: https://doi.org/10.1128/AAC.48.10.3758-3764.2004

Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F and Torres C. 2002. b-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrobial Agents and Chemotherapy 46: 3156–63. DOI: https://doi.org/10.1128/AAC.46.10.3156-3163.2002

Carattoli A. 2008. Animal reservoirs for extended spectrum blactamase producers. Clinical Microbiology and Infection 14(1): 117–23. DOI: https://doi.org/10.1111/j.1469-0691.2007.01851.x

CLSI. 2012. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement M100-S22. CLSI, Wayne, PA.

Costa D, Poeta P, Brinas L, Saenz Y, Rodrýgues J and Torres C. 2004. Detection of CTX-M-1 and TEM-52 b-lactamases in Escherichia coli strains from healthy pets in Portugal. Journal of Antimicrobial Chemotherapy 54: 960–61. DOI: https://doi.org/10.1093/jac/dkh444

Dahmen S, Metayer V, Gay E,Madec J Y and Haenni M. 2013. Characterization of extended-spectrum b-lactamase (ESBL)- carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Veterinary Microbiology. 162: 793– 99. DOI: https://doi.org/10.1016/j.vetmic.2012.10.015

EFSA, 2011. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum b-lactamases and/or AmpC b-lactamases in food and food-producing animals. European Food Safety Authority Journal 9(8): 2322. DOI: https://doi.org/10.2903/j.efsa.2011.2322

Falgenhauer L, Imirzaliogla C, Oppong K, Akenten C, Hogan B, Krumkamp R, Poppert S, Levermann V, Schwengers O, Sarpong N, Dabo E, May J and Eibach D. 2019. Detection and characterization of ESBL-producing Escherichia coli from Humans and Poultry in Ghana. Frontiers in Microbiology 9: 1–8. DOI: https://doi.org/10.3389/fmicb.2018.03358

Geser N, Stephan R and Hachler H. 2012. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Veterinary Research 8(21): 1–9. DOI: https://doi.org/10.1186/1746-6148-8-21

Kozak G K, Boerlin P, Janecko N, Reid-Smith R J and Jardine C. 2009. Antimicrobial resistance in Escherichia coli isolates from Swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Applied and Environmental Microbiology 75(3): 559–66. DOI: https://doi.org/10.1128/AEM.01821-08

Lawson M A. 2008. The antibiotic resistance problem revisited. American Biology Teacher 70(7): 405–10. DOI: https://doi.org/10.1662/0002-7685(2008)70[405:TARPR]2.0.CO;2

Liebana E, Carattoli A, Coque T M, Hasman H, Magiorakos A P, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C and Threlfall J. 2013. Public health risks of enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in food and foodproducing animals: anEU perspective of epidemiology, analytical methods, risk factors, and control options. Clinical Infectious Diseases 56: 1030–37. DOI: https://doi.org/10.1093/cid/cis1043

Livermore D M. 1995. B-Lactamases in laboratory and clinical resistance. Clinical Microbiology Review 8: 557–84. DOI: https://doi.org/10.1128/CMR.8.4.557

Lyhs U, Ikonen I, Pohjanvirta T, Raninen K, Perko-Makela P and Pelkonen S. 2012. Extra intestinal pathogenic Escherichia coli in poultry meat products on the Finnish retail market. Acta Veterinaria Scandinavica 16: 54–64. DOI: https://doi.org/10.1186/1751-0147-54-64

Machado E, Coque T M, Canto´n R, Sousa J C and Peixe L. 2008. Antibiotic resistance integrons and extended-spectrum b-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. Journal of Antimicrobial Chemotherapy 62: 296–302. DOI: https://doi.org/10.1093/jac/dkn179

Martinez J L, Cercenado E, Rodriguez-Creixems M, Vicente- Perez M F, Delgado-Iribarren A and Baquero F. 1987. Resistance to beta-lactam/clavulanate. Lancet 2(8573): 1473– 81. DOI: https://doi.org/10.1016/S0140-6736(87)91180-9

Meunier D, Jouy E, Lazizzera C, Kobisch M and Madec J Y. 2006. CTX-M-1- and CTX-M-15- type b-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Journal of Antimicrobial Agents 28: 402– 07. DOI: https://doi.org/10.1016/j.ijantimicag.2006.08.016

Miro E, Mirelis B, Navarro F, Rivera A, Mesa R J, Roig M C, Gomez L and Coll P. 2005. Surveillance of extended-spectrum b-Lactamases fromclinical samples and faecal carries in Barcelona, Spain. Journal of Antimicrobial Chemotherapy 56: 1152–55. DOI: https://doi.org/10.1093/jac/dki395

Monstein H J, Ostholm-Balkhed A, Nilsson M V, Dornbusch K and Nilsso L E. 2007. Multiplex PCR amplification assay for rapid detection of blaSHV, blaTEM and blaCTX-M genes in enterobacteriaceae. Acta Pathologica Microbiologica et Immunologica Scandinavica 115(1): 400–08. DOI: https://doi.org/10.1111/j.1600-0463.2007.00722.x

Moreno M A, Teshager T, Porrero C, García M, Escudero E, Torres C and Domínguez L. 2007. Abundance and phenotypic diversity of Escherichia coli isolates with diminished susceptibility to expanded-spectrum cephalosporins in faeces from healthy food animals after slaughter. Veterinary Microbiology 120: 363–69. DOI: https://doi.org/10.1016/j.vetmic.2006.10.032

Moubareck C, Daoud Z, Hakime N I, Hamze´ M, Mangeney N, Matta H, Mokhbat J E, Rohbanm R, Sarkism D K and Doucet- Populaire F. 2005. Country wide spread of community and hospital-acquired extended-spectrum beta-lactamase (CTXM- 15) producing Enterobacteriaceae in Lebanon. Journal of Clinical Microbiology 43: 3309–13. DOI: https://doi.org/10.1128/JCM.43.7.3309-3313.2005

Newell D G, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, Van Der Giessen J and Kruse H. 2010. Food-borne diseases – the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology 139(1): S3–S15. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

Ogbolu D O, Alli O A T, Olanipekun L B, Ojo O I and Makinde O O. 2013. Faecal carriage of extended-spectrum beta lactamase (ESBL) producing commensal Klebsiella pneumonia and Escherichia coli from hospital out-patients in Southern Nigeria. International Journal of Medicine and Medical Sciences 5(3): 97–105.

Olowe O A, Oladipo G O, Makanjuola O A and Olaitan J O. 2012. Prevalence of extended spectrum beta-lactamases (Esbls) carrying genes in Klebsiella spp from clinical samples at ileife, south western Nigeria. International Journal of Pharma and Bio Sciences 1(2): 129–38.

Olugbenga A O, Olufunmilayo A, Gbolabo O, Olusola O. and Olusolabomi J A. 2015. Phenotypic and molecular characterisation of extended-spectrum beta-lactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. Journal of Environmental and Public Health. DOI: https://doi.org/10.1155/2015/497980

Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa H, Gotuzzo E, Kronvall G, Paradisi F and Rossolini G M. 2007. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal Escherichia coli isolates from healthy children from lowresource settings in Latin America. Antimicrobial Agents and Chemotherapy 51: 2720–25. DOI: https://doi.org/10.1128/AAC.00026-07

Pasom W, Chanawong A, Lulitanond A, Wilailuckana C, Kenprom S and Puang- Ngern P. 2013. Plasmid-mediated quinolone resistance genes, aac (60)-Ib-cr,qnrS, qnrB, and qnrA, in urinary isolates of Escherichia coli and Klebsiella pneumoniae at a teaching hospital, Thailand. Japanese Journal of Infectious Diseases 66: 428–32. DOI: https://doi.org/10.7883/yoken.66.428

Paterson D L, Hujer K M, Hujer A M, Yeiser B and Bonomo M D. 2003. Extended spectrum b- lactamases in Klebsiella pneumoniae blood stream isolates from seven countries: Dominance and widespread prevalence of SHV-and CTX-Mtype b-lactamases. Antimicrobial Agents and Chemotherapy 47(11): 3553–60. DOI: https://doi.org/10.1128/AAC.47.11.3554-3560.2003

Rath S, Dubey D, Sahu M C and Padhy R N. 2014. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India. Asian Pacific Journal of Tropical Disease 4: 140–49. DOI: https://doi.org/10.1016/S2222-1808(14)60331-5

Saenz Y, Zarazaga M, Brias L, Lantero M, Ruiz-Larrea F and Torres C. 2001. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. International Journal of Antimicrobial Agents 18(4): 353–58. DOI: https://doi.org/10.1016/S0924-8579(01)00422-8

Sanders C C, and Sanders W E. 1992. Beta-lactam resistance in gram negative bacteria: global trends and clinical impact. Clinical Infectious Diseases 15: 824–39. DOI: https://doi.org/10.1093/clind/15.5.824

Schlundt J, Toyofuku H, Jansen J and Herbst S A. 2004. Emerging food borne zoonoses. Revue Scientifique Technique 23: 513– 33. DOI: https://doi.org/10.20506/rst.23.2.1506

Schmid A, Hormansdorfer S, Messelhausser U, Kasbohrer A, Sauter-Louis C and Mansfeld R. 2013. Prevalence of extendedspectrum b-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Applied Environmental Microbiology 79: 3027–32. DOI: https://doi.org/10.1128/AEM.00204-13

Smet A, Nieuwerburgh F and Vandekerckhove T T M. 2010. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: Insertional events of transposons and insertion sequences. PLoS ONE 5(6): 11202. DOI: https://doi.org/10.1371/journal.pone.0011202

Smet A, Martel A and Persoons D. 2008. Diversity ofextendedspectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrobial Agents and Chemotherapy 52: 1238–43. DOI: https://doi.org/10.1128/AAC.01285-07

Snow L C, Warner R G, Cheney T, Wearing H, Stokes M, Harris K, Teale C J and Coldham N G. 2012. Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Preventive Veterinary Medicine 106: 225–34. DOI: https://doi.org/10.1016/j.prevetmed.2012.03.009

Stapleton P, Wu P J, King A, Shannon K, French G and Phillips I. 1995. Incidence and mechanisms of resistance to the combination of amoxicillin and clavulanic acid in Escherichia coli. Antimicrobial Agents and Chemotherapy 39: 2478–83. DOI: https://doi.org/10.1128/AAC.39.11.2478

Umolu P I, Omigie O, Tatfeng Y, Omorogbe F I, Aisabokhale F and Ugbodagah O P. 2006. Antimicrobial susceptibility and plasmid profiles of Escherichia coli isolates obtained from different human clinical specimens in Lagos-Nigeria. The Journal of American Science 2(4): 1931–56.

Valverde A, Coque T M, Sanchez-Moreno M P, Rollan A, Baquero F and Canton R. 2004. Dramatic increase in prevalence of fecal carriage of extended-spectrum b-lactamase-producing Enterobacteriaceae during non-outbreak situations in Spain. Journal of Clinical Microbiology 42: 4769–75. DOI: https://doi.org/10.1128/JCM.42.10.4769-4775.2004

Witte W. 1998. Medical consequences of antibiotic use in agriculture. Science 279(5353): 996–97. DOI: https://doi.org/10.1126/science.279.5353.996

Wu P J, Shannon K and Phillips I. 1994. Effect of hyperproduction of TEM-1 B-lactamase on in vitro susceptibility of Escherichia coli to B-lactam antibiotics. Antimicrobial Agents and Chemotherapy 38: 494–98. DOI: https://doi.org/10.1128/AAC.38.3.494

Yuan Li, Liu J, Hu G, Pan Y, Liu A, Mo J and Wei Y. 2009. Molecular characterization of extended-spectrum Beta lactamase producing Escherichia coli isolates from chicken in Henan Province, china. Journal of Medical Microbiology 58: 1448–53. DOI: https://doi.org/10.1099/jmm.0.012229-0

Zhou X Y, Bordon F, Sirot D, Kitzis M D and Gutmann L. 1994. Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1B-lactamase conferring resistance to B-lactamase inhibitors. Antimicrobial Agents and Chemotherapy 38:1085–89. DOI: https://doi.org/10.1128/AAC.38.5.1085

Downloads

Submitted

2020-10-29

Published

2020-10-29

Issue

Section

Articles

How to Cite

PRAJAPATI, B. I., SOLANKI, K. M., DEVI, S., KATIRA, B. P., PATEL, S. S., RAVAL, S. H., & MOMIN, R. R. (2020). Phenotypic and molecular characterization of ESBLs producing Escherichia coli in bovine faecal and milk samples of North Gujarat. The Indian Journal of Animal Sciences, 90(7), 987-992. https://doi.org/10.56093/ijans.v90i7.106667
Citation