Pharmacokinetic evaluation of cefquinome in febrile goats following intravenous administration


168 / 104

Authors

  • RASHMI SAGAR Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India
  • MUDASIR SULTANA Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab
  • VINOD K. DUMKA Institute of Computational and Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
  • PRITAM K. SIDHU Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir 180 009 India

https://doi.org/10.56093/ijans.v90i10.111249

Keywords:

Cefquinome, E. coli LPS, Fever, Goats, Intravenous, Pharmacokinetics, PK-PD

Abstract

Pharmacokinetics of cefquinome was studied in febrile female goats following its intravenous (IV) administration at the dose rate of 2 mg/kg body weight. The fever was induced by administration of Escherichia coli lipopolysaccharide (lμg/kg body weight). Cefquinome concentration in plasma of goats was estimated using HPLC. The drug was detected upto 24 h in febrile goats. The disposition kinetics of the drug was described by twocompartment open model. PK-PD indices; AUC24h/MIC, Cmax/MIC, T>MIC were calculated by integrating in-vivo PK data with earlier generated MIC data against Pasteurella (P.) multocida. A favourable PK and PK-PD indices suggested that the dose of 2 mg/kg/24 h of cefquinome would be effective clinically to treat goats affected with P. multocida infections.

Downloads

Download data is not yet available.

References

Allan M J and Thomas E. 2003. Pharmacokinetics of cefquinome after parenteral administration of an aqueous solution in the horse. Journal of Veterinary Pharmacology and Therapeutics 26(1): 82–307. DOI: https://doi.org/10.1046/j.1365-2885.2003.00485.x

Al-TaherA Y. 2010. Pharmacokinetics of cefquinome in camels. Journal of Animal and Veterinary Advances 9(4): 848–52. DOI: https://doi.org/10.3923/javaa.2010.848.852

Ambrose P G, Bhavnani S M, Rubino C M, Louie A, Gumbo T, Forrest A and Drusano G L. 2007. Pharmacokineticspharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clinical Infectious Diseases 44(1): 79–86. DOI: https://doi.org/10.1086/510079

Balaje R M, Sidhu P K, Kaur G and Rampal S. 2013. Mutant prevention concentration and PK–PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves. Research in Veterinary Science 95(3): 1114–24. DOI: https://doi.org/10.1016/j.rvsc.2013.07.019

Chaudhary R K, Srivastava A K and Rampal S. 1999. Modification of the pharmacokinetics and dosage of cefuroxime by endotoxin-induced fever in buffalo calves. Veterinary Research Communications 23(6): 361–68. DOI: https://doi.org/10.1023/A:1006385624850

Dardi M S, Sharma S K and Srivastava A K. 2005. Pharmacokinetics and dosage regimen of ceftriaxone in E. coli lipopolysaccharide induced fever in buffalo calves. Journal of Veterinary Science 6: 147–50. DOI: https://doi.org/10.4142/jvs.2005.6.2.147

Dinakaran V, Dumka V K, Ranjan B, Balaje R and Sidhu P K. 2013. Pharmacokinetics following intravenous administration and pharmacodynamics of cefquinome in buffalo calves. Tropical Animal Health and Production 45: 1509–12. DOI: https://doi.org/10.1007/s11250-013-0390-7

Dinakaran V and Dumka V K. 2015. Pharmacokinetic profile of cefquinome after oral subchronic flubendiamide exposure and in vitro plasma protein binding in buffalo calves. Environmental Toxicology and Pharmacology 39(1): 321–26. DOI: https://doi.org/10.1016/j.etap.2014.12.004

Dumka V K, Dinakaran V, Bibhuti R and Satyavan R. 2013. Comparative pharmacokinetics of cefquinome following intravenous and intramuscular administration in goats. Small Ruminant Research 113: 273–77. DOI: https://doi.org/10.1016/j.smallrumres.2013.02.010

Ehinger A M, Schmidt H and Kietzmann M. 2006. Tissue distribution of cefquinome after intramammary and systemic administration in the isolated perfused bovine udder. Veterinary Journal 172(1): 147–53. Guerin-Faublee V, Carret G and Houffschmitt P. 2003. In vitro activity of 10 antimicrobial agents against bacteria isolated from cows with clinical mastitis. Veterinary Record 152(15): 466–71. DOI: https://doi.org/10.1016/j.tvjl.2005.02.029

Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan R D, Wei K S C and Ismail S. 2014. Prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from bovine respiratory infection. Veterinary Journal 202(2): 381–83. DOI: https://doi.org/10.1016/j.tvjl.2014.07.024

Lam F C, Hung C T and Perrier D G. 1985. Estimation of variance for harmonic mean half lives. Journal of Pharmaceutical Sciences 74(2): 229–31. DOI: https://doi.org/10.1002/jps.2600740229

Lees P, Concordet D, Toutain P L and Aliabadi F S. 2006. Drug selection and optimization of dosage schedules to minimize antimicrobial resistance. Antimicrobial Resistance in Bacteria of Animal Origin. American Society of Microbiology 49–72. DOI: https://doi.org/10.1128/9781555817534.ch5

Levison M E and Levison J H. 2009. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infectious Disease Clinics 23(4): 791–815. DOI: https://doi.org/10.1016/j.idc.2009.06.008

Momin M A, Islam M A, Khatun M M, Rahman M M and Islam M A. 2011. Characterization of bacteria associated with pneumonia in black bengal goats. Bangladesh Journal of Veterinary Medicine 9(1): 67–71. DOI: https://doi.org/10.3329/bjvm.v9i1.11215

Mouton J W, Ambrose P G, Canton R, Drusano G L, Harbarth S, MacGowan A, Theuretzbacher U and Turnidge J. 2011. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates 14(2): 107–17. DOI: https://doi.org/10.1016/j.drup.2011.02.005

Perrier D and Gibaldi M. 1974. Clearance and biologic half-life as indices of intrinsic hepatic metabolism. Journal of Pharmacology and Experimental Therapeutics 191(1): 17– 24.

Pipoz F, Perreten V and Meylan M. 2016. Bacterial resistance in bacteria isolated from the nasal cavity of Swiss dairy calves. Schweizer Archiv fur Tierheilkunde 158(6): 397–403. DOI: https://doi.org/10.17236/sat00065

Ranjan R, Roy B K, Ranjan A and Singh S K. 2011. Effect of E. coli endotoxin induced fever on the pharmacokinetic profile and dosage regimen of ceftriaxone in sheep (Ovis aries). Veterinarski Arhiv 81(4): 423–32.

Roberts J A, Webb S A and Lipman J. 2007. Cefepime versus ceftazidime: considerations for empirical use in critically ill patients. International Journal of Antimicrobial Agents 29(2): 117–28. DOI: https://doi.org/10.1016/j.ijantimicag.2006.08.031

Sagar R, Sultana M, Dumka V K, Mir A H, Daundkar P and Chirag S. 2015. Pharmacokinetics and dosage regimen of cefquinome in febrile female goats following intravenous administration. Journal of Veterinary Pharmacology and Toxicology 14(2): 74–78.

Salaheddin O H and Hanan M E. 2012. Pneumonia in goats in Sudan. International Journal of Animal and Veterinary Advances 4: 144–45.

Sarangi L N, Thomas P, Gupta S K, Priyadarshini A, Kumar S, Nagaleekar V K, Kumar A and Singh V P. 2015. Virulence gene profiling and antibiotic resistance pattern of Indian isolates of Pasteurella multocida of small ruminant origin. Comparative Immunology, Microbiology and Infectious Diseases 38: 33–39. DOI: https://doi.org/10.1016/j.cimid.2014.11.003

Schwarz S, Kehrenberg C, Salmon S A and Watts J L. 2004. In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. Journal of Antimicrobial Chemotherapy 53(2): 379–82. DOI: https://doi.org/10.1093/jac/dkh059

Shlaby M A, Goudah A, Gihan M K and Hassan A S. 2014. Disposition kinetics of cefquinome in healthy rabbits following intramuscular and oral administration. World Journal of Pharmacy and Pharmaceutical Sciences 4(1): 263–74.

Shan Q, Yang F, Wang J, Ding H and Zeng Z. 2014. Pharmacokinetic/pharmacodynamic relationship of cefquinome against Pasteurella multocida in a tissue cage model in yellow cattle. Journal of Veterinary Pharmacology and Therapeutic 37(2): 178–85. DOI: https://doi.org/10.1111/jvp.12076

Shantier S W. 2018. A review on the characteristic, properties and analytical methods of cefquinome sulphate: -lactam veterinary drug. Infect Disorders Drug Targets. doi: 10.2174/ 1871526518666181001122010.

Sidhu P K, Waraich G S, Kaur G, Daundkar P S, Sharma S K and Gehring R. 2018. Difference in the PK of ceftiofur in the presence and absence of nimesulide and implications for dose determination through PK/PD integration. Small Ruminant Research 159: 18–25. DOI: https://doi.org/10.1016/j.smallrumres.2017.12.005

Sirous S, Mohammed R M D, Gholam A K, Taghi T B and Abbas T. 2011. Pasteurella multocida pneumonic infection in goat: Hematological, biochemical, clinical and pathological studies. Small Ruminant Research 100: 189–94. DOI: https://doi.org/10.1016/j.smallrumres.2011.07.006

Thomas E, Thomas V and Wilhelm C. 2006. Antibacterial activity of cefquinome against equine bacterial pathogens. Veterinary Microbiology 115: 140–47. DOI: https://doi.org/10.1016/j.vetmic.2005.12.019

Tohamy M A. 2011. Age-related intramuscular pharmacokinetics of cefquinome in sheep. Small Ruminant Research 99: 72–76. DOI: https://doi.org/10.1016/j.smallrumres.2011.03.004

Uney K, Altan F and Elmas M. 2011. Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its applica-tion to pharmacokinetic studies. Antimicrob Agents Chemotherapy 55: 854–59. DOI: https://doi.org/10.1128/AAC.01126-10

Downloads

Submitted

2021-03-31

Published

2021-04-05

Issue

Section

Articles

How to Cite

SAGAR, R., SULTANA, M., DUMKA, V. K., & SIDHU, P. K. (2021). Pharmacokinetic evaluation of cefquinome in febrile goats following intravenous administration. The Indian Journal of Animal Sciences, 90(10), 1340-1345. https://doi.org/10.56093/ijans.v90i10.111249
Citation