Analysis of allelic pattern across milk trait genes in native cattle adapted to high altitude region of Leh-Ladakh


Abstract views: 188 / PDF downloads: 69

Authors

  • MONIKA SODHI National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • PREETI VERMA DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT
  • VIJAY K BHARTI National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • PRABHAT KUMAR National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • ARUP GIRI National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • PARVESH K National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • DEEPAK GAGOI National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • ANKITA SHARMA National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • SANDEEP MANN National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • MANISHI MUKESH National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India

https://doi.org/10.56093/ijans.v90i11.111509

Keywords:

Candidate gene, Genetic polymorphism, High altitude, Ladakhi cattle, Leh-Ladakh, Milk trait

Abstract

Ladakhi, the native cattle from Ladakh region of India have developed over the years under natural selection and can survive well at extreme climatic conditions, viz. high altitude, huge barren lands, low temperature (≤–20°C) and hypoxic conditions. Even at extreme survival conditions, this cattle provides around 2–5 kg of milk. This highly evolved germplasm might possess unique alleles or combinations of alleles, hence attempt was made to study the frequency of allelic variants at important candidate gene loci affecting dairy traits. The observed distribution pattern of allele frequencies were different from taurine but in accordance with other Indian native cattle breeds indicating maintenance of indicine characteristics and near absence of taurine influence/introgression effect on this naturally evolved germplasm. Further, variant E at κ-CN locus and two novel variants at BTN-3 loci were also observed. The present findings helped to understand the unique Ladakhi cattle population with respect to polymorphism and distribution of various alleles in candidate genes related to milk traits.

Downloads

Download data is not yet available.

References

Bhattacharya T K, Misra S S, Sheikh F D, Sukla S, Kumar P and Sharma A. 2006. Effect of butyrophilin gene polymorphism on milk quality traits in crossbred cattle. Asian-Australasian Journal of Animal Sciences 19(7): 922–6. DOI: https://doi.org/10.5713/ajas.2006.922

Biase F H, Garnero, A D V, Bezerra L A, Rosa A J, Lôbo R B and Martelli L. 2005. Analysis of restriction fragment length polymorphism in the kappa-casein gene related to weight expected progeny difference in Nellore cattle. Genetics and Molecular Biology 28: 84–87. DOI: https://doi.org/10.1590/S1415-47572005000100014

Bleck T G and Bermel R D. 1993. Correlation of the - lactalbumin (+15) polymorphism to milk production and milk composition of Holsteins. Journal of Dairy Science 76: 2292– 98. DOI: https://doi.org/10.3168/jds.S0022-0302(93)77566-9

Blumberg B S and Tombs M P. 1958 Possible polymorphism of bovine alpha-lactalbumin. Nature 513: 683–84. DOI: https://doi.org/10.1038/181683a0

Caroli A, Chessa S, Bolla P, Budelli E and Gandini G C. 2004. Genetic structure of milk protein polymorphisms and effects on milk production traits in local dairy cattle. Journal of Animal Breeding and Genetics 121: 119–27. DOI: https://doi.org/10.1111/j.1439-0388.2003.00443.x

Castrillo J L, Theill L E and Karin M. 1991. Function of the homeodomain protein GHF1 in Pituitary cell proliferation. Science 253: 197–99. DOI: https://doi.org/10.1126/science.1677216

Celik S. 2003. -lactoglobulin genetic variants in Brown Swiss breed and its association with compositional properties and rennet clotting time of milk. International Dairy Journal 13(9): 727–31. DOI: https://doi.org/10.1016/S0958-6946(03)00093-1

Chung E R, Kim W T and Lee C S. 1998. DNA polymorphism of k-casein, beta-lactoglobulin, growth hormone and prolactin genes in Korean cattle. Asian Australasian Journal of Animal Sciences 11: 422–27. DOI: https://doi.org/10.5713/ajas.1998.422

Dybus A N, Szatkowska I W, Czerniawska-Piatkowska E, Grzesiak W I, Wojcik J E, Rzewucka E D and Zych S Ù. 2004. PIT-1/Hinf I gene polymorphism and its associations with milk production traits in polish Black-and-White cattle. Archives Animal Breeding 47: 557–63. DOI: https://doi.org/10.5194/aab-47-557-2004

Dybus A, Grzesiak W, Kamienieck H, Szatkowska I, Sobek Z, Blaszcyk P, Piatkowska E C, Zych S and Muszynska M. 2005. Association of genetic variants of bovine prolactin with milk production traits of Black-and-White and Jersey cattle. Archives of Animal Breeding 48(2): 149–56. DOI: https://doi.org/10.5194/aab-48-149-2005

Etherton T D and Bauman D E. 1998. Biology of somatotropin in growth and lactation of domestic animals. Physiological Reviews 78: 745–61. DOI: https://doi.org/10.1152/physrev.1998.78.3.745

Farrell H M, Jimenez-Flores R, Bleck G T, Brown E M, Butler J E, Creamer L K, Hicks C L, Hollar C N, Ng-Kwai-Hang K F and Swaisgood H E. 2004. Nomenclature of the proteins of cows’ milk–sixth revision. Journal of Dairy Science 87: 1641–74. DOI: https://doi.org/10.3168/jds.S0022-0302(04)73319-6

Ganai T A S and Bhat P P. 2001. Amplification of betalactoglobulin and alpha-lactalbumin genomic sequences through Polymerase chain reaction and their genotyping using RFLP analysis in cattle and buffaloes. Indian Journal of Animal Genetics and Breeding 23: 393–99.

Golijow C D, Giovambattista G, Rípoli M V, Dulout F N and Lojo M M. 1999. Genetic variability and population structure in loci related to milk production traits in native Argentine Creole and commercial Argentine Holstein cattle. Genetics and Molecular Biology 22: 395–98. DOI: https://doi.org/10.1590/S1415-47571999000300018

Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M and Snell R. 2002. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222–31. DOI: https://doi.org/10.1101/gr.224202

Grosclaude F. 1988. Genetic polymorphism of the principal milk proteins in cattle. Relation with quantity, composition and cheese making suitability of milk. INRA Productions Animals. Journal of Dairy Science 74: 1730–42.

Hallén E, Wedholm A, Andrén A and Lundén A. 2008. Effect of casein, casein and lactoglobulin genotypes on concentration of milk protein variants. Journal of Animal Breeding and Genetics 125: 119–29. DOI: https://doi.org/10.1111/j.1439-0388.2007.00706.x

Heck J M L, Schennink A, Valenberg H J F V, Bovenhuis H, Visker M H P W, Arendonk J A M V and Hooijdonk A C M V. 2009. Effects of milk protein variants on the protein composition of bovine milk. Journal of Dairy Science 92: 1192–1202. DOI: https://doi.org/10.3168/jds.2008-1208

Ho S, Woodford K., Kukuljan S and Pal S. 2014. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study. European Journal of Clinical Nutrition 68: 994–1000. DOI: https://doi.org/10.1038/ejcn.2014.127

Høj S, Fredholm M, Larsen N J and Nielsen V H. 1993. Growth hormone gene polymorphism associated with selection for milk fat production lines of cattle. Animal Genetics 24: 91–96. DOI: https://doi.org/10.1111/j.1365-2052.1993.tb00246.x

Husaini Y, Wilkins R J and Davey H W. 1999. Identification of five point mutations, including an AluI RFLP, in the bovine butyrophilin gene. Animal Genetics 30: 382–405 DOI: https://doi.org/10.1046/j.1365-2052.1999.00526-23.x

Ilie D, Salajeanu A, Magdin A, Stanca C and Vintilã I. 2008. Genetic polymorphism at the -lactoglobulin locus in a dairy herd of Romanian spotted and brown of maramures breeds. Scientific Papers Animal Science and Biotechnologies 41(1): 104–7.

Jairam B T and Nair P G. 1983. Genetic polymorphism of milk proteins and economic characters in dairy animals. Indian Journal of Animal Science 53: 1.

Jang G W, Cho K H, Kim T H, Oh S J, Cheong I C and Lee K J. 2005. Association of candidate genes with production traits in Korean dairy proven and young bulls Asian-Australasian Journal of Animal Sciences 18: 165–69. DOI: https://doi.org/10.5713/ajas.2005.165

Jeichitra V, Kandasamy N and Panneerselvam S. 2003. Milk protein polymorphism in Kangayam cattle. Tropical Animal Health Production 35(2): 147–53. DOI: https://doi.org/10.1023/A:1022825518939

Jianqin S, Leiming X, Lu, X. Yelland G W, Ni J and Clarke A J. 2015. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutrition Journal 15: 35. DOI: https://doi.org/10.1186/s12937-016-0164-y

Karimi K, BeigiNassiri M T, Mirzadeh K, Ashayerizadeh A, Roushanfekr H and Fayyazi J. 2009. Polymorphism of the âlactoglobulin gene and its association with milk production traits in Iranian Najdi cattle. Iranian Journal of Biotechnology 7(2): 82–5.

Kaupe B, Winter A, Fries R and Erhardt G. 2004. DGAT1 Polymorphism in Bos indicus and Bos taurus cattle breeds. Animal Genetics 71: 182–87. DOI: https://doi.org/10.1017/S0022029904000032

Kemenes P A, Regitano L C D A, Rosa A J D M, Packer I U, Razook A G, Figueiredo L A D and Coutinho L L. 1999 kcasein, b-lactoglobulin and growth hormone allele frequencies and genetic distances in Nelore, Gyr, Guzerá, Caracu,

Charolais, Canchim and Santa Gertrudis Cattle. Genetics and Molecular Biology 22: 539–41.

Komisarek J and Dorynek Z. 2003. Polymorphism of BTN and GHR genes and its impact on bull breeding value for milk production traits. Journal of Animal and Feed Sciences 12: 681–88. DOI: https://doi.org/10.22358/jafs/67762/2003

Komisarek J, Waskowicz K and Dorynek Z. 2006. Analysis of the relationship between two single nucleotide polymorphisms of the butyrophilin (BTN1A1) gene and milk production traits in Jersey cattle. Annals of Animal Science 6(1): 45–52.

Kost N V, Sokolov O Y, Kurasova O B, Dmitriev A D, Tarakanova J N, Gabaeva M V and Mikheeva I G. 2009. -Casomorphins- 7 in infants on different type of feeding and different levels of psychomotor development. Peptides 30: 1854–60. DOI: https://doi.org/10.1016/j.peptides.2009.06.025

Kostyra E, Sienkiewicz-Szùapka E, Jarmoùowska B, Krawczuk S and Kostyra H. 2004. Opioid peptides derived from milk proteins. Polish Journal of Food and Nutrition Sciences 13: 25–35.

Kucerova J, Matejicek A, Jandurova O M, Sorensen P, Nemcova E, Stipkova M, Kott T, Bouska J and Frelich, J. 2006. Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech Journal of Animal Science 51: 241. DOI: https://doi.org/10.17221/3935-CJAS

Lacorte G A, Machado M A, Martinez M L, Campos A L, Maciel R P, Verneque R S, Teodoro R L, Peixoto M G, Carvalho M R and Fonseca C G. 2006. DGAT1 K232A polymorphism in Brazilian cattle breeds. Genetics and Molecular Research 5: 475–82.

Lagziel A, DeNise S, Hanotte O, Dhara S, Glazko V, Broadhead A, Davoli R, Russo V and Soller M. 2000. Geographic and breed distribution of an MspI PCR RFLP in the bovine growth hormone (bGH) gene. Animal Genetics 31: 210–13. DOI: https://doi.org/10.1046/j.1365-2052.2000.00622.x

Lee K H, Chang K W, Cho K H and Lee K J. 2002. Genetic polymorphisms of BTN and STAT5a genes in Korean proven and young bulls. Asian Australasian Journal of Animal Science 15: 938–43. DOI: https://doi.org/10.5713/ajas.2002.938

Lewin H A, Schmitt K, Hubert R, van Eijk M J and Arnheim N. 1992. Close linkage between bovine prolactin and BoLADRB3 genes: genetic mapping in cattle by single sperm typing. Genomics 13: 44–48. DOI: https://doi.org/10.1016/0888-7543(92)90200-C

Mao Y J, Zhong G H, Zheng Y C, Pen X W, Yang Z P, Wang Y and Jiang M F.2004. Genetic polymorphism of milk protein and their relationships with milking traits in Chinese yak. Asian-Australasian Journal of Animal Sciences 17: 1479–83. DOI: https://doi.org/10.5713/ajas.2004.1479

Martin P, Szymanowska M, Zwierzchowski L and Leroux C. 2002. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reproduction nutrition development 42: 433–59 DOI: https://doi.org/10.1051/rnd:2002036

Mattos K K, Del Lama S N, Martinez M L and Freitas A F. 2004. Association of bGH and Pit-1 gene variants with milk production traits in dairy Gyr bulls. Pesquisa Agropecuária Brasileira 39: 147–50. DOI: https://doi.org/10.1590/S0100-204X2004000200007

Mir S N, Ullah O and Sheikh R. 2014. Genetic polymorphism of milk protein variants and their association studies with milk yield in Sahiwal cattle. African Journal of Biotechnology 13: 555–65. DOI: https://doi.org/10.5897/AJB2013.13216

Mishra B P, Mukesh M, Prakash B, Sodhi M, Kapila R, Kishore A, Kataria R R, Joshi B K, Bhasin V, Rasool T J and Bujarbaruah K M. 2009. Status of milk protein -casein variants among Indian milch animals. Indian Journal of Animal Science 7: 722–25

Mitra A, Schlee P, Balakrishnan C R and Pirchner F. 1995. Polymorphisms at growth hormone and prolactin loci in Indian cattle and buffalo. Journal of Animal Breeding and Genetics 112: 71–74. DOI: https://doi.org/10.1111/j.1439-0388.1995.tb00543.x

Moody D E, Pomp D and Barendse W. 1995. Restriction fragment length polymorphism in amplification products of the bovine PIT-1 gene assignment of PIT-1 to bovine chromosome 1. Animal Genetics 26: 25–47. DOI: https://doi.org/10.1111/j.1365-2052.1995.tb02620.x

Mukesh M, Sodhi M, Sobti R C, Prakash B, Kaushik R, Aggarwal R A and Mishra B P. 2008. Analysis of bovine pituitary specific transcription factor-HinfI gene polymorphism in Indian zebuine cattle. Livestock Science 113: 81–86. DOI: https://doi.org/10.1016/j.livsci.2007.02.020

Nelson C, Albert V R, Elsholtz H P, Lu L I and Rosenfeld M G. 1988. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239: 1400–05. DOI: https://doi.org/10.1126/science.2831625

Oner Y and Elmaci C. 2006. Milk protein polymorphisms in Holstein cattle. International Journal of Dairy Technology 59(3): 180–2. DOI: https://doi.org/10.1111/j.1471-0307.2006.00259.x

Osterhoff D R and Pretorius A M G. 1966. Inherited biochemical polymorphism in milk proteins South African Society of Animal Production 5: 166.

Pappas M C R, Lourenço I T, Regitano L C A and Alencar M M. 2004. Investigaçãodo polimorfismo K232A do gene DGAT1 emraças de Bos indicus e seuscruzamentos. Embrapa, Circular Técnica 35: 68.

Patel R K, Chauhan J B, Singh K M and Soni K J. 2008. Allelic frequency of kappa-casein and beta lactoglobulin in Indian crossbred (Bos taurus × Bos indicus) dairy bulls. Turkish Journal of Veterinary and Animal Sciences 31(6): 399–402.

Rachagani S, Gupta I D, Gupta N and Gupta S C. 2006. Genotyping of -Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds. BMC genetics 7: 31. DOI: https://doi.org/10.1186/1471-2156-7-31

Regitano L C, Vasconcellos L P, Jacinto E, Tambasco M D, Tambasco D D, EuclidesFilho K, Barbosa P F, Packer I U and Coutinho L L.2000. Genetic distances among Aberdeen Angus, Canchim, Caracu, Nelore and Simmental beef cattle breeds. Proceedings of the Global Conference on Conservation of Domestic Animal Breeds (Vol. 5).

Ripoli M V, Corva P and Giovambattista G. 2006. Analysis of a polymorphism in the DGAT1 gene in 14 cattle breeds through PCR-SSCP methods. Research in Veterinary Science 80: 287– 90. DOI: https://doi.org/10.1016/j.rvsc.2005.07.006

Ron M, Yoffe O, Ezra E, Medrano J F and Weller J I. 1994. Determination of effects of milk protein genotype on production traits of Israeli Holsteins. Journal of Dairy Science 77: 1106–13. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77046-6

Schlee P and Rottamann O. 1992. Genotyping of bovine -casein, -lactoglobulin and lactalbumin using the polymerase chain reaction. Journal of Animal Breeding Genetics 109: 456–64. DOI: https://doi.org/10.1111/j.1439-0388.1992.tb00427.x

Shetty S, Patel R K, Soni K J, Singh K M and Chauhan J B. 2006. Allelic frequency of -casein and -lactoglobulin in Jersey cattle. Indian Journal of Veterinary Research 15: 15–21 Sodhi M, Mukesh M, Mishra B P, Kishore A, Prakash B, Kapil R and Joshi B K. 2012. Screening of taurine and crossbred breeding bulls for A1/A2 variants of -casein gene. Indian Journal of Animal Science 82: 183–86.

Sodhi M, Mukesh M, Mishra BP, Parvesh K and Joshi B K. 2011. Analysis of genetic variation at the prolactin-RsaI (PRL-RsaI) locus in Indian native cattle breeds (Bos indicus). Biochemical genetics 49(1–2): 39–45. DOI: https://doi.org/10.1007/s10528-010-9383-7

Sodhi M, Mukesh, M, Prakash B, Mishra B P, Sobti R C, Singh K P, Singh S and Ahlawat S P S. 2007. MspI allelic pattern of bovine growth hormone gene in Indian Zebu cattle (Bos indicus) breeds. Biochemical Genetics 45: 145–53. DOI: https://doi.org/10.1007/s10528-006-9068-4

Sodhi, M, Mishra B P, Prakash B, Kaushik R, Singh K P and Mukesh M. 2010. Distribution of major allelic variants at Exon IV of kappa casein gene in Indian native cattle. Journal of Applied Animal Research 38: 117–21. DOI: https://doi.org/10.1080/09712119.2010.9707169

Spelman R J, Ford C A, McElhinney P, Gregory G C and Snell R G. 2002. Characterization of the DGAT1 gene in the New Zealand Dairy population. Journal of Dairy Science 85: 3514– 17. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74440-8

Strzalkowska N, Krzyzewski J, Zwierzchowski L and Ryniewicz Z. 2002. Effects of kappa-casein and beta-lactoglobulin loci polymorphism, cows’ age, stage of lactation and somatic cell count on daily milk yield composition in Polish Black-and- White cattle. Animal Science Papers and Reports (Poland) 20: 21–35.

Tantia M S, Vijh R K, Mishra B P, Mishra B, 587 Kumar S B and Sodhi M. 2006. DGATI and ABCG2 polymorphism in Indian cattle (Bos indicus) and Buffalo (Bubalus bubalis) breeds. BMC Veterinary Research. 2: 32–65. DOI: https://doi.org/10.1186/1746-6148-2-32

Taylor C, Everest M and Smith C. 1996. Restriction fragment length polymorphism in amplification products of the bovine butyrophilin gene: Assignment of bovine butyrophilin to bovine chromosome 23. Animal Genetics 27: 183–85. DOI: https://doi.org/10.1111/j.1365-2052.1996.tb00948.x

Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H and Fries R. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics 34: 354–57. DOI: https://doi.org/10.1046/j.1365-2052.2003.01011.x

Tsiaras A M, Bargouli G G, Banos G and Boscos C M. 2005. Effect of kappa-casein and beta lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. Journal of Dairy Science 88: 327–34. DOI: https://doi.org/10.3168/jds.S0022-0302(05)72692-8

Zhou G L, Jin H G, Liu C, Guo S L, Zhu Q and Wu Y H. 2005. Association of genetic polymorphism in GH gene with milk production traits in Beijing Holstein cows. Journal of Biosciences 30: 595–98. DOI: https://doi.org/10.1007/BF02703558

Zwierzchowski L, Krzyzewski J, Strzalkowska N, Siadkowska E and Ryniewicz Z. 2002. Effects of polymorphism of growth hormone (GH), Pit-1, and leptin (LEP) genes, cow’s age, lactation stage and somatic cell count on milk yield and composition of Polish Black and-White cows. Animal Science Papers and Reports 20: 213–27.

Downloads

Submitted

2021-04-06

Published

2021-04-07

Issue

Section

Articles

How to Cite

SODHI, M., VERMA, P., BHARTI, V. K., KUMAR, P., GIRI, A., K, P., GAGOI, D., SHARMA, A., MANN, S., & MUKESH, M. (2021). Analysis of allelic pattern across milk trait genes in native cattle adapted to high altitude region of Leh-Ladakh. The Indian Journal of Animal Sciences, 90(11), 1499-1508. https://doi.org/10.56093/ijans.v90i11.111509
Citation