Performance and egg quality of laying Japanese quails (Coturnix coturnix japonica) reared in hot climate as a function of digestible arginine: lysine ratios in the diet


Abstract views: 118 / PDF downloads: 139

Authors

  • MARCOS VINÍCIUS MARTINS MORAIS Department of Animal Science, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100000, Brazil https://orcid.org/0000-0001-8335-4127
  • HEDER JOSÉ D’AVILA LIMA Department of Animal Science and Rural Extension, Federal University of Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brazil https://orcid.org/0000-0002-8360-8227
  • FERNANDA NUNES ALBERNAZ SILVA Department of Animal Science and Rural Extension, Federal University of Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brazil https://orcid.org/0000-0002-0224-7117
  • MARCUS VINICIUS FIGUEIREDO CAMPOS GOMES Department of Animal Science and Rural Extension, Federal University of Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brazil https://orcid.org/0000-0002-1420-9572

https://doi.org/10.56093/ijans.v92i10.114248

Keywords:

Amino acids, Antagonism, Body weight, Feed efficiency, Ideal protein, Laying quail

Abstract

The objective of this study was to determine the ideal digestible arginine: lysine ratio in the diet of laying Japanese quails reared in hot climate, on the variables of productive performance and egg quality. Completely randomized experimental design was adopted with five diets and six replications containing eight laying quails (Coturnix japonica) per experimental unit, totaling 240 birds with an average weight of 169.6±0.005 g and 40 weeks of age with an initial egg production of 79.18±3.32%. The digestible arginine: lysine ratios were 110%, 120%, 130%, 140% and 150%. The arginine: lysine ratios analyzed were not able to influence feed intake, egg production, commercial eggs, egg weight, egg mass, feed conversion per egg mass (FCEM) and per dozen eggs (FCDZ); however, there was a quadratic effect for the variation in body weight. There was no significant difference for egg quality characteristics. The 110% digestible arginine: lysine ratio in the diet of laying Japanese quails reared in a hot climate is sufficient to maintain the productive performance and the egg quality.

Downloads

Download data is not yet available.

References

Abdallah A G, Harms R H and El-Husseiny O. 1993. Various methods of measuring shell quality in relation to percentage of cracked eggs. Poultry Science 72(11): 2038–43. DOI: https://doi.org/10.3382/ps.0722038

Applegate T, Powers W, Angel R and Hoehler D. 2008. Effect of amino acid formulation and amino acid supplementation on performance and nitrogen excretion in turkey toms. Poultry Science 87(3): 514–20. DOI: https://doi.org/10.3382/ps.2007-00375

Atencio A, Albino L F T, Rostagno H S, Carvalho D C D O, Vieites F M and Pupa J M R. 2004. Exigência de arginina digestível para frangos de corte machos em diferentes fases. Revista Brasileira de Zootecnia 33(6): 1456–66. DOI: https://doi.org/10.1590/S1516-35982004000600012

Attia Y A, Abd El A E H E, Abedalla A A, Berika M A, Al-Harthi M A, Kucuk O and Abou-Shehema B M. 2016. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springer Plus 5(1): 1–12. DOI: https://doi.org/10.1186/s40064-016-3304-0

Bülbül T, Ulutaş E and Evcimen M. 2015. Effects of dietary supplementation of arginine and lysine on performance and egg quality characteristics of laying quails. Ankara Üniversitesi Veteriner Fakültesi Dergisi 62(4): 307–12. DOI: https://doi.org/10.1501/Vetfak_0000002697

Compêndio Brasileiro de Alimentação Animal – C B A A. 2017. 5th edn. Sindicato Nacional da Indústria da Alimentação Animal, São Paulo, Brasil, pp 116–216.

D’ Mello J P F. 2003. Amino acids as multifunctional molecules. (Ed.) D’Mello J P F. Amino Acids in Animal Nutrition. Oxon, UK: CABI publishing, cap. 1, pp 1–14. DOI: https://doi.org/10.1079/9780851996547.0001

Eisen E J, Bohren B B and Mckean H E. 1962. The Haugh unit as a measure of egg albumen quality. Poultry Science 41(5): 1461–68. DOI: https://doi.org/10.3382/ps.0411461

El-Tarabany M S. 2016. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails. International Journal of Biometeorology 60(7): 957–64. DOI: https://doi.org/10.1007/s00484-015-1088-5

Fathi M, Al-Homidan I, Al-Dokhail A, Ebeid T, Abou-Emera O and Alsagan A. 2018. Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response and egg quality characteristics in laying hens under high ambient temperature. Italian Journal of Animal Sciences 17(3): 804–14. DOI: https://doi.org/10.1080/1828051X.2018.1425104

Fouad A M, El-Senousey H K, Yang X J and Yao J H. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7(8): 1239–45. DOI: https://doi.org/10.1017/S1751731113000347

Gheisari H R, Asasi K, Mostafa I and Mohsenifard E. 2015. Effect of different levels of dietary crude protein on growth performance, body composition of broiler chicken and low protein diet in broiler chicken. International Journal of Poultry Science 14(5): 285–92. DOI: https://doi.org/10.3923/ijps.2015.285.292

Hernandez F, Lopez M, Martinez S, Megias M D, Catala P and Madrid J. 2012. Effect of low-protein diets and single sex on production performance, plasma metabolites, digestibility, and nitrogen excretion in 1- to 48-day-old broilers. Poultry Science 91(3): 683–92. DOI: https://doi.org/10.3382/ps.2011-01735

Jobgen W S, Fried S K, Fu W J, Meininger C J and Wu G. 2006. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. Journal of Nutritional Biochemistry 17(9): 571–88. DOI: https://doi.org/10.1016/j.jnutbio.2005.12.001

Khajali F and Wideman R F. 2010. Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World’s Poultry Science Journal 66(4): 751–66. DOI: https://doi.org/10.1017/S0043933910000711

Lima H J D. 2018. Coturnicultura Básica. Editora Multifoco pp 94.

Maciel M P, Moura V H S, Aiura F S, Arouca C L C, Souza L F M, Silva D B and Said J L S. 2019. Níveis de proteína em rações com milho ou sorgo para codornas japonesas. Archivos de Zootecnia 68(261): 110–18. DOI: https://doi.org/10.21071/az.v68i261.3946

Manwar S J, Moudgal R P, Sastry K V H, Mohan J, Tyagi J B S and Raina R. 2006. Role of nitric oxide in ovarian follicular development and egg production in Japanese quail (Coturnix coturnix japonica). Theriogenology 65(7): 1392–1400. DOI: https://doi.org/10.1016/j.theriogenology.2005.08.023

Maurício T V, Vargas Junior J G, Souza M F, Barboza W A, Carvalho N L, Soares R T R N and Silva Nascimento H. 2016. Digestible arginine concentrations in the diet of Japanese quails. Semina: Ciências Agrárias 37(4): 2453–61. DOI: https://doi.org/10.5433/1679-0359.2016v37n4Supl1p2453

Mehaisen G M, Ibrahim R M, Desoky A A, Safaa H M, El-Sayed O A and Abass A O. 2017. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 12(10): e0186907. DOI: https://doi.org/10.1371/journal.pone.0186907

National Research Council – NRC. 1994. Nutrient Requirements of Poultry. Committee on Animal Nutrition. Subcommittee on Poultry Nutrition. Washington, EUA. 9th edn. Washington, National Academy of Sciences, pp. 78–176.

Paulino M T F, Oliveira E M, Grieser D O and Toledo J B. 2019. Criação de frangos de corte e acondicionamento térmico em suas instalações: Revisão. PUBVET 13(2): 1–14. DOI: https://doi.org/10.31533/pubvet.v13n3a280.1-14

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Rostagno H S, Albino L F T, Hannas M I, Donzele J L, Sakomura N K, Perazzo F G and Brito C O. 2017. Brazilian tables for poultry and swine: Food composition and nutritional requirements, Department of Animal Science, Viçosa-MG, 4th edn. 488 pages.

Silva J H V and Costa F G P. 2009. Tables for Japanese and European quail: Special topics, food composition and nutritional requirements. 2nd edn. Jaboticabal: FUNEP, pp 60–107.

Sundaresan N R, Anish D, Sastry K V H, Saxena V K, Mohan J and Ahmed K A. 2007. Cytokines in reproductive remodeling of molting White Leghorn hens. Journal of Reproductive Immunology 73(1): 39–50. DOI: https://doi.org/10.1016/j.jri.2006.05.001

Tuesta G M R, Viana G S, Barreto S L T, Muniz J C L, Reis R S, Mencalha R and Hannas M I. 2018. Optimal standardized ileal digestible arginine to lysine ratio for Japanese quails in the egg-laying phase. Brazilian Journal of Poultry Science 20(2): 351–56. DOI: https://doi.org/10.1590/1806-9061-2017-0554

Downloads

Submitted

2021-08-23

Published

2022-10-11

Issue

Section

Articles

How to Cite

MORAIS, M. V. M., LIMA, H. J. D., SILVA, F. N. A., & GOMES, M. V. F. C. (2022). Performance and egg quality of laying Japanese quails (Coturnix coturnix japonica) reared in hot climate as a function of digestible arginine: lysine ratios in the diet. The Indian Journal of Animal Sciences, 92(10), 1216–1221. https://doi.org/10.56093/ijans.v92i10.114248
Citation