Stem Cell Therapeutics in veterinary medicine in India


638 / 296

Authors

  • Mudasir Bashir Gugjoo FVSc & AH, SKUAST-Kashmir
  • Fajar Farooq Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-Kashmir Srinagar-190006
  • Qumaila Sakeena Division of Veterinary Surgery & Radiology, FVSc & AH, SKUAST-Kashmir Srinagar-190006
  • Ejaz Rasool Dar Division of Veterinary Surgery & Radiology, FVSc & AH, SKUAST-Kashmir Srinagar-190006
  • Sharun Khan Division of Surgery, IVRI, Izatnagar, Bareilly, UP- 243122
  • Amarpal Amarpal Division of Surgery, IVRI, Izatnagar, Bareilly, UP- 243122
  • Jalal ud Din Parrah Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-Kashmir, Shuhama, Srinagar, J&K-190006
  • Dil Mohammad Makhdoomi Division of Veterinary Surgery & Radiology, FVSc & AH, SKUAST-Kashmir Srinagar-190006
  • Kuldeep Dhama Division of Pathology, IVRI, Izatnagar, Bareilly, UP- 243122
  • Gutulla Taru Sharma Division of Physiology and Climatology, IVRI, Izatnagar, Bareilly, UP- 243122

https://doi.org/10.56093/ijans.v92i5.115586

Keywords:

Clinical studies, Mesenchymal stem cell, Veterinary Species, Therapeutic applications

Abstract

Stem cell, a wonder cell, acts as a basic unit for an individual development in early prenatal life, and
repairs and regenerates the tissue and/ organ in post-natal life. The stem cell research although conducted extensively is still in its infancy for standardized therapeutics. Among various stem cells types, multi-potential mesenchymal stem cell (MSC) is mainly evaluated for therapeutic applications. These cells have been isolated from almost all the body organs/ tissues and fetal membranes and are culture expanded for higher concentrations. Like human, MSCs harvested from veterinary species are characterized on the basis of International Society for Cellular Therapy (ISCT). Extensive literature on their therapeutic applications in musculoskeletal and non-musculoskeletal systems evidences their potential utility under clinical settings. Currently, limited understanding in their  hysiological mechanisms and availability of limited non-uniform in vivo studies restrict their definitive therapeutic applications. Lack of regulatory set up in India makes MSCs research in veterinary medicine a more complicated field. This review details the current status and possible ways to improve MSCs therapeutic applications in veterinary medicine, in  general and in Indian system, in particular. 

Downloads

Download data is not yet available.

Author Biography

  • Mudasir Bashir Gugjoo, FVSc & AH, SKUAST-Kashmir

    Assistant Professor, 

    Division of Veterinary Clinical Complex,

    FVSc & AH, SKUAST-Kashmir

    Srinagar-190006

     

References

Aboul-Soud M A M, Alzahrani A J and Mahmoud A. 2021. Induced Pluripotent Stem Cells (iPSCs)—Roles in regenerative therapies, disease modelling and drug Screening. Cells 10(9): 2319. DOI: https://doi.org/10.3390/cells10092319

Akram T, Shah R A, Fazili M R, Mudasir H, Mir B A, Hussain S S, Ahmad S M, Dar P A, Ganai NA and Shabir N. 2017. Comparative efficiency of goat mesenchymal stem cell isolation from bone marrow and bone chip. Small Ruminant Research 153: 87–94. DOI: https://doi.org/10.1016/j.smallrumres.2017.05.007

Amarpal, Dhama K, Chakraborty S, Tiwari R and Natesan S. 2013. Stem cells and their clinical/therapeutic applications in biomedical and veterinary science – The perspectives. Research Opinions in Animal and Veterinary Sciences 3(9): 261–79.

Ansari M M, Sreekumar T R, Chandra V, Dubey P, Sai Kumar K G, Amarpal and Sharma G T. 2013. Therapeutic potential of canine bone marrow derived Mesenchymal Stem Cells and its conditioned media in diabetic rat wound healing. Journal of Stem Cell Research and Therapy 3: 141. DOI: https://doi.org/10.4172/2157-7633.1000141

Arzi B, Kol A, Murphy B, Walker N J, Wood J A, Clark K, Verstraete F J M and Borjesson D L. 2015. Feline foamy virus adversely affects feline mesenchymal stem cell culture and expansion: Implications for animal model development. Stem Cells and Development 24(7): 814–23. DOI: https://doi.org/10.1089/scd.2014.0317

Bahamondes F, Flores E, Cattaneo G, Bruna F and Conget P. 2017. Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells. BioMed Central Veterinary Research 13: 166. DOI: https://doi.org/10.1186/s12917-017-1053-0

Baird A E G, Barsby T and Guest D J. 2015. Derivation of canine induced pluripotent stem cells. Reproduction in Domestic Animal 50(4): 669–76. DOI: https://doi.org/10.1111/rda.12562

Beerts C, Suls M, Broeckx S Y, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal M A and Spaas J H. 2017. Tenogenically induced allogeneic peripheral blood mesenchymal stem cells in allogeneic platelet-rich plasma: 2-year follow-up after tendon or ligament treatment in Horses. Frontiers in Veterinary Sciences 4: 158. DOI: https://doi.org/10.3389/fvets.2017.00158

Benavides-Castellanos M P, Garzon-Orjuela N and Linero I. 2020. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: A systematic review and meta-analysis. Cell Regeneration 9(1): 5. DOI: https://doi.org/10.1186/s13619-020-00047-3

Bhat I A, Sivanarayanan T B, Somal A, Pandey S, Bharti M K, Panda B S K, Indu B, Verma M, Anand J, Sonwane A, Sai Kumar G, Amarpal, Chandra V and G T. 2019. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. Journal of Cellular Physiology 234(3): 2705–18. DOI: https://doi.org/10.1002/jcp.27086

Bhatt J, Amarpal, Bhat A R, Singh A P, Pawde A M, Bhat I A and Sharma G T. 2021. Studies on the efficacy of single and twice application of mesenchymal stem cells in full thickness cutaneous wound healing. Indian Journal of Animal Research 10. DOI: https://doi.org/10.18805/IJAR.B-4212

Bhatt J, Bhat A R, Singh A P, Indu B and Amarpal. 2018. Application of mesenchymal stem cells for surgical and chronic wound healing in dogs. Indian Journal of Veterinary Surgery 39(1): 51–52.

Bittencourt M K W, Barros M A, Martins J F P, Vasconcellos J P C, Morais B P, Pompeia C, Bittencourt M D, Evangelho K S, Kerkis I and Wenceslau C V. 2016. Allogeneic mesenchymal stem cell transplantation in dogs with Keratoconjunctivitis Sicca. Cell Medicine 8: 63–77. DOI: https://doi.org/10.3727/215517916X693366

Bohannon L K, Owens S D, Walker N J, Carrade D D, Galuppo L D and Borjesson D L. 2013. The effects of therapeutic concentrations of gentamicin, amikacin and hyaluronic acid on cultured bone marrow-derived equine mesenchymal stem cells. Equine Veterinary Journal 45: 732–36. DOI: https://doi.org/10.1111/evj.12045

Borena B M, Pawde A M, Amarpal, Aithal H P, Kinjavdekar P, Singh R and Kumar D. 2009. Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits. Veterinary Record 165(19): 563–68. DOI: https://doi.org/10.1136/vr.165.19.563

Broeckx S Y, Seys B, Suls M, Vandenberghe A, Mariten T, Adriaensen E, Declercq J, Van Hecke L, Braun G, Hellmann K and Spaas J H. 2019. Equine allogeneic chondrogenic induced mesenchymal stem cells are an effective treatment for degenerative joint disease in horses. Stem Cells Development 28(6): 410–22. DOI: https://doi.org/10.1089/scd.2018.0061

Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, Rodriguez-Alvarez L and Castro F O. 2014. The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reproduction in Domestic Animals 49(4): 550–59. DOI: https://doi.org/10.1111/rda.12309

Carvalho A M, Yamada A L M, Martins J R B, Maia L, Golim M A, Deffune E, Hussni C A and Alves A L G. 2013. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells. Pesquisa Veterinaria Brasileira 33(9): 1151–54. DOI: https://doi.org/10.1590/S0100-736X2013000900017

Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y and Li B. 2017. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BioMed Central Biotechnology 17: 11. DOI: https://doi.org/10.1186/s12896-017-0336-7

Chow L, Johnson V, Regan D, Wheat W, Webb S, Koch P and Dow S. 2017. Safety and immune regulatory properties of canine induced pluripotent stem cell derived mesenchymal stem cells. Stem Cell Research 25: 221–32. DOI: https://doi.org/10.1016/j.scr.2017.11.010

Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C and Lazzari G. 2009. Isolation, growth and differentiation of equine mesenchymal stem cells: Effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Veterinary Research Communications 33: 811. DOI: https://doi.org/10.1007/s11259-009-9229-0

Dar E J. 2021. ‘Studies on healing potential of allogeneic mesenchymal stem cells in full thickness skin wound in rabbit model and bovine clinical teat injuries.’ Thesis submitted to SKUAST-Kashmir, J&K, India-190006.

Dar E R, Gugjoo M B, Javaid M, Hussain S, Fazili M R, Dhama K, Alqahtani T, Alqahtani A M , Shah R A and Emran T B. 2021. Adipose tissue- and bone marrow-derived mesenchymal stem cells from Sheep: Culture characteristics. Animals (Basel) 11(8): 2153. DOI: https://doi.org/10.3390/ani11082153

de Papa P M, Guasti P N, Vita B D, Nakazato N G, Maia L, da Aqua C P F , da Scheeren, V F C, Segabinazzi, L G T M, deAndrade Junior L R P, Silva L F M C, Araujo E A B, Oliveira S N, Papa F O, Landim-Alvarenga F C and Alvarenga M A. 2020. Clinical safety of intra-testicular transplantation of allogeneic bone marrow multipotent stromal cells in stallions. Reproduction in Domestic Animals 55: 429–37. DOI: https://doi.org/10.1111/rda.13624

De Schauwer C D, Piepers S, de Walle G R V, Demeyere K, Hoogewijs M K, Govaere J L J, Braeckmans K, Soom A V and Meyer E. 2012. In search for crossreactivity to immunophenotype equine mesenchymal stromal cells by multicolour flow cytometry. Cytometry Part A 81: 312–23. DOI: https://doi.org/10.1002/cyto.a.22026

Debbarma P, Mondal T, Manna C, Kumar K, Mukherjee J, Das B C, Bag S and Das K. 2020. Post-calving umbilical cord tissue offcut: A potential source for the isolation of bovine mesenchymal stem cells. Veterinary World 13(12): 2772–79. DOI: https://doi.org/10.14202/vetworld.2020.2772-2779

Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas J H, Pille F and Martens A. 2021. The evaluation of Equine Allogeneic Tenogenic Primed mesenchymal stem cells in a surgically induced superficial digital flexor tendon lesion model. Frontiers in Veterinary Science 8: 641441. DOI: https://doi.org/10.3389/fvets.2021.641441

Dev K, Giri S, Kumar A, Yadav A, Singh B and Gautam S. 2012. Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reproduction in Domestic Animals 47(5): 704–11. DOI: https://doi.org/10.1111/j.1439-0531.2011.01947.x

Dias I E, Pinto P O, Barros L C, Viegas C A, Dias I R and Carvalho P P. 2019. Mesenchymal stem cells therapy in companion animals: Useful for immune-mediated diseases? BioMed Central Veterinary Research 15: 358. DOI: https://doi.org/10.1186/s12917-019-2087-2

Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J and Gu X. 2010. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)- based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Engineering Part A 16: 3779–90. DOI: https://doi.org/10.1089/ten.tea.2010.0299

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F C, Krause D S, Deans R J, Keating A, Prockop D J and Horwitz E M. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherarpy 8(4): 315– 17. DOI: https://doi.org/10.1080/14653240600855905

Dutton L C, Dudhia J, Guest D J and Connolly D J. 2019. Inducing pluripotency in the domestic cat (Felis catus). Stem Cells and Development 28(19): 1299–1309. DOI: https://doi.org/10.1089/scd.2019.0142

Edmonds R E, Garvican E R, Smith R K W and Dudhia J. 2016. Influence of commonly used pharmaceutical agents on equine bone marrow-derived mesenchymal stem cell viability. Equine Veterinary Journal 49(3): 352–57. DOI: https://doi.org/10.1111/evj.12590

EMA. 2017. http://www.ema.europa.eu/docs/en_GB/document_ library/Scientific_guideline/2017/06/WC500229927.pdf. Updated 2017. Accessed 2018 Sep 12.

EMA. 2018. http://www.ema.europa.eu/docs/en_GB/document_ library/Scientific_guideline/2016/07/WC500210915.pdf. Updated 2016. Accessed 2018 Sep 12.

Escalhao C C M, Ramos I P, Hochman-Mendez C, Brunswick T H K, Souza S A L, Gutfilen B, Goldenberg R C S and Coelho- Sampaio T. 2017. Safety of allogeneic canine adipose tissue-derived mesenchymal stem Cell intra-spinal transplantation in dogs with chronic spinal cord injury. Stem Cells International. DOI: https://doi.org/10.1155/2017/3053759

Espina M, Julke H, Brehm W, Ribitsch I, Winter K and Delling U. 2016. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses. Peer Journal 4: 1773. DOI: https://doi.org/10.7717/peerj.1773

Ferrer L, Kimbrel E A, Lam A, Falk E B, Zewe C, Juopperi T, Lanza R and Hoffman A. 2016. Treatment of perianal fistulas with human embryonic stem cell-derived mesenchymal stem cells: A canine model of human fistulizing Crohn’s disease. Regenerative Medicine 11(1): 33–43. DOI: https://doi.org/10.2217/rme.15.69

Gade N E, Pratheesh M D, Nath A, Dubey P K, Amarpal, Sharma B, Saikumar G and Sharma G T. 2013. Molecular and cellular characterization of buffalo bone marrow-derived mesenchymal stem cells. Reproduction in Domestic Animals 48(3): 358–67. DOI: https://doi.org/10.1111/j.1439-0531.2012.02156.x

Garvican E R, Cree S, Bull L, Smith R K W and Dudhia J. 2016. Viability of equine mesenchymal stem cells during transport and implantation. Stem Cell Research Therapy 5: 1. DOI: https://doi.org/10.1186/s13287-016-0423-z

German S D, Campbell K H, Thornton E, McLachlan G, Sweetman D and Alberio R. 2015. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cellular Reprogramming 17(1): 19–27. DOI: https://doi.org/10.1089/cell.2014.0071

Ghasemzadeh-Hasankolaei M, Eslaminejad B M and Sedighi- Gilani M. 2015. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cellular and Development Biology-Animal 52(1): 49–61. DOI: https://doi.org/10.1007/s11626-015-9945-4

Ghosh K, Kumar R, Singh J, Gahlawat S K, Kumar D, Selokar N L, Yadav S P, Gulati B R and Yadav P S. 2015. Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro. In Vitro Cellular Developmental Biology-Animal 51(9): 915–21. DOI: https://doi.org/10.1007/s11626-015-9920-0

Gibson M A, Brown S G and Brown N O. 2017. Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs. Canadian Veterinary Journal 58: 241–46.

Gomzikova M O, James V and Rizvanov A A. 2019. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Frontiers in Immunology 10: 2663. DOI: https://doi.org/10.3389/fimmu.2019.02663

Grady S T, Watts A E, Thompson J A, Penedo M C T, Konganti K and Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. Journal of Assisted Reproduction and Genetics 36: 543–56. DOI: https://doi.org/10.1007/s10815-018-1371-6

Gugjoo M B and Amarpal. 2018. Mesenchymal stem cell research in sheep: Current DOI: https://doi.org/10.1016/j.smallrumres.2018.08.002

status and future prospects. Small Ruminant Research 169: 46–56.

Gugjoo M B and Amarpal. 2020a. Mesenchymal Stem Cell Research in Veterinary Sciences. Springer Nature. Pp.1-337. DOI: https://doi.org/10.1007/978-981-15-6037-8_13

Gugjoo M B and Amarpal. 2020b. Mesenchymal stem cell differentiation properties and available microenvironment, pp. 67-87. DOI: https://doi.org/10.1007/978-981-15-6037-8_5

Mesenchymal Stem Cell in Veterinary Sciences. (Eds) M B Gugjoo and Amarpal. Springer Nature.

Gugjoo M B, Amarpal, Chandra V, Wani M Y, Dhama, K and Sharma G T. 2018a. Mesenchymal stem cell research in veterinary medicine. Current Stem Cell Research and Therapy 13(8): 645–57. DOI: https://doi.org/10.2174/1574888X13666180517074444

Gugjoo M B, Amarpal, Fazili M R, Shah R A and Sharma G T. 2018b. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. Journal of Cellular Physiology 234(6): 8618–35. DOI: https://doi.org/10.1002/jcp.27846

Gugjoo M B, Amarpal, Fazili M R, Shah R A, Mir M S and Sharma G T. 2020c. Goat mesenchymal stem cell basic research and potential applications. Small Ruminant Research 183: 106045. DOI: https://doi.org/10.1016/j.smallrumres.2019.106045

Gugjoo M B, Amarpal, Ismail A A, Aithal H P, Kinjavdekar P, Kumar G S and Sharma G T. 2020a. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regenerative Medicine 15(2): 1261–75. DOI: https://doi.org/10.2217/rme-2018-0138

Gugjoo M B, Amarpal, Kinjavdekar P, Aithal H P, Ansari M M, Pawde A M and Sharma G T. 2015b. Isolation, culturing and characterization of New Zealand White rabbit mesenchymal stem cells derived from bone marrow. Asian Journal of Animal and Veterinary Advances 10(10): 537–48. DOI: https://doi.org/10.3923/ajava.2015.537.548

Gugjoo M B, Amarpal, Kinjavdekar P, Aithal H P, Pawde A M, Bodh D and Sharma G T. 2015a. Cancer stem cells: Concepts and therapeutic applications. Asian Journal of Animal and Veterinary Advances 10(9): 509–17. DOI: https://doi.org/10.3923/ajava.2015.509.517

Gugjoo M B, Amarpal, Makhdoomi D M and Sharma G T. 2019a. Equine mesenchymal stem cells: Properties, sources, characterization and potential therapeutic applications. Journal of Equine Veterinary Science 72: 16–27. DOI: https://doi.org/10.1016/j.jevs.2018.10.007

Gugjoo M B, Fazili M R, Gayas M A, Ahmad R A and Dhama K. 2019b. Animal mesenchymal stem cell research in cartilage regenerative medicine: A review. Veterinary Quarterly 39(1): 95–120. DOI: https://doi.org/10.1080/01652176.2019.1643051

Gugjoo M B, Amarpal, Abdelbaset-Ismail A, Aithal H P, Kinjavdekar P, Pawde A M, Kumar G S and Sharma G T. 2017. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomedicine and Pharmacotherapy 93: 1165–74. DOI: https://doi.org/10.1016/j.biopha.2017.07.032

Gugjoo M B, Hussain S, Amarpal, Shah R A and Dhama K. 2020b. Mesenchymal stem cell-mediated immuno-modulatory and anti-inflammatory mechanisms in immune and allergic disorders. Recent Patents Inflammation Allergy Drug Discovery 14(1): 3–14. DOI: https://doi.org/10.2174/1872213X14666200130100236

Guideline on Safety Assessment of Cell-Based Products for Animal Use [Internet]. Gimcheon: Animal and Plant Quarantine Agency. Updated 2018. Accessed 2018 Sep 12.

Gulati B R, Kumar R, Mohanty N, Kumar P, Somasundaram R K and Yadav P S. 2013. Bone morphogenetic protein-12 induces tenogenic differentiation of mesenchymal stem cells derived from equine amniotic fluid. Cells Tissues Organs 198(5): 377–89. DOI: https://doi.org/10.1159/000358231

Hepsibha P, Meenambigai T V, Mangalagowri A, Palanisamy A, Stalin A, Nithya S and Kumanan K. 2011. Multipotent differentiation potential of buffalo adipose tissue derived mesenchymal stem cells. Asian Journal of Animal Veterinary Advances 6: 772–88. DOI: https://doi.org/10.3923/ajava.2011.772.788

Hunakova K, Hluchy M, Spakova T, Jana M, Mudronova D, Kuricova M, Rosocha J and Ledecky V. 2020. Study of bilateral elbow joint osteoarthritis treatment using conditioned medium from allogeneic adipose tissue-derived MSCs in Labrador retrievers. Research in Veterinary Science 132: 513–20. DOI: https://doi.org/10.1016/j.rvsc.2020.08.004

Iacono E, Brunori L, Pirrone A, Pagliaro P P, Ricci F, Tazzari P L and Merlo B. 2012. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction 143(4): 455–68. DOI: https://doi.org/10.1530/REP-10-0408

Iacono E, Lanci A, Merlo B, Ricci F, Pirrone A, Antonelli C, Mariella J and Castagnetti C. 2016. Effects of amniotic fluid mesenchymal stem cells in carboxymethyl cellulose gel on healing of spontaneous pressure sores: Clinical outcome in seven hospitalized neonatal foals. Turkish Journal of Biology 40: 484–92. DOI: https://doi.org/10.3906/biy-1507-147

Iravani K, Sobhanmanesh A, Ashraf M J, Hashemi S B, Mehrabani D and Zare S. 2017. The healing effect of conditioned media and bone marrow-derived stem cells in laryngotracheal stenosis: A comparison in experimental dog model. World Journal of Plastic Surgery 6(2): 190–97.

Ji M, Bai C, Li L, Fan Y, Ma C, Li X and Guan W. 2016. Biological characterization of sheep kidneyderived mesenchymal stem cells. Experimental and Therapeutic Medicine 12: 3963–71. DOI: https://doi.org/10.3892/etm.2016.3902

Joseph A, Baiju I, Bhat I A, Pandey S, Bharti M, Verma M, Singh A P, Ansari M M, Chandra V, Saikumar G, Amarpal and Sharma G T. 2020. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. Journal of Cellular Physiology 1–15 DOI: https://doi.org/10.1002/jcp.29486

Kang J G, Park S B, Seo M S, Kim H S, Chae J S and Kang K S. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood. Journal of Veterinary Sciences 14: 367–71. DOI: https://doi.org/10.4142/jvs.2013.14.3.367

Kang M H and Park H M. 2014. Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Veterinaria Scandinavica 56: 16. DOI: https://doi.org/10.1186/1751-0147-56-16

Khashjoori B K, Ghamsari S M, Dehghan M M, Mohajeri S F, Gholami H and Golshahi H. 2019. Evaluation of the effects of adipose derived mesenchymal stem cells cultured on decellularized amniotic membrane in wound healing of distal part of the limbs in horse. Iranian Journal of Veterinary Medicine 13(1): 11–25.

Koerner J, Nesic D, Romero J D, Brehm W, Mainil-Varlet P and Grogan S P. 2006. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24(6): 1613–19. DOI: https://doi.org/10.1634/stemcells.2005-0264

Kriston-Pal E, Czibula A, Gyuris Z, Balka G, Seregi A, Sukosd F, Suth M, Kiss-Toth, E, Haracska L, Uher F and Monostori E. 2017. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Canadian Journal of Veterinary Research 81: 73–78.

Kumar K, Agarwal P, Das K, Milli B, Madhusoodan A P, Kumar A and Bag S. 2016. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. Tissue and Cell 48(6): 653–58. DOI: https://doi.org/10.1016/j.tice.2016.06.004

Lange-Consiglio A, Gusmara C, Manfredi E, Idda A, Soggiu A and Greco V. 2019. Antimicrobial effects of conditioned medium from amniotic progenitor cells in vitro and in vivo: Toward tissue regenerative therapies for bovine mastitis. Frontiers in Veterinary Sciences 6: 443. DOI: https://doi.org/10.3389/fvets.2019.00443

Lee J H, Chang H S, Kang E H, Chung D J, Choi C B, Lee J H, Hwang S H, Han H and Kim H Y. 2009. Percutaneous transplantation of human umbilical cord blood-derived multipotent stem cells in a canine model of spinal cord injury. Journal of Neurosurgery Spine 11(6): 749–57. DOI: https://doi.org/10.3171/2009.6.SPINE08710

Lee J, Lee K S, Kim C L, Byeon, J S, Gu N Y, Cho I S and Cha S H. 2017a. Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells. Journal of Veterinary Sciences 18(2): 141–48. DOI: https://doi.org/10.4142/jvs.2017.18.2.141

Lee S J, Ryu M O, Seo M S, Park S B, Ahn J O, Han S M, Kang K S, Bhang D H and Youn H Y. 2017b. Mesenchymal stem cells contribute to improvement of renal function in a canine kidney injury model. In Vivo 31(6): 1115–24. DOI: https://doi.org/10.21873/invivo.11177

Liao L, Shi B, Chang H, Su X, Zhang L, Bi C, Shuai Y, Du X, Deng Z and Jin Y. 2017. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics 7(1): 106–16. DOI: https://doi.org/10.7150/thno.16911

Lombana K G, Goodrich L R, Phillips J N, Kisiday J D, Ruple- Czerniak A and McIlwraith C W. An investigation of equine Mesenchymal stem cell characteristics from different harvest sites: More similar than not. Frontiers in Veterinary Sciences 2: 67. DOI: https://doi.org/10.3389/fvets.2015.00067

Lu T, Huang Y, Wang H, Ma Y and Guan W. 2014. Multi-lineage potential research of Bone Marrow-Derived Stromal Cells (BMSCs) from Cattle. Applied Biochemistry and Biotechnology 172: 21–35. DOI: https://doi.org/10.1007/s12010-013-0458-x

Ma C, Liu C, Li X, Lu T, Bai C, Fan Y, Guan W and Guo Y. 2017. Cryopreservation and multipotential characteristics evaluation of a novel type of mesenchymal stem cells derived from Small Tailed Han Sheep fetal lung tissue. Cryobiology 75: 7–14. DOI: https://doi.org/10.1016/j.cryobiol.2017.03.003

Madhu D N, Ahmad R A, Amarpal, Gugjoo M B, Pawde A M, Kinjavedkar P, Aithal H P, Ansari M M, Chandra V and Sharma G T. 2014. Caudal superficial epigastric axial pattern flap and stem cell therapy for the management of large wound on medial aspect of thigh in a dog. Advances in Animal and Veterinary Sciences 2(3): 188–91. DOI: https://doi.org/10.14737/journal.aavs/2014/2.3.188.191

Malagola E, Teunissen M, Van der Laan L J, Verstegen M M, Schotanus B A, van Steenbeek F G, Penning L C, van Wolferen M E, Tryfonidou, M A and Spee B. 2016. Stem characterization and comparison of canine multipotent stromal cells derived from liver and bone marrow. Stem Cells Development 25(2): 139–50. DOI: https://doi.org/10.1089/scd.2015.0125

Martinello T, Bronzini I, Maccatrozzo L, Iacopetti I, Sampaolesi M, Mascarello F and Patruno M. 2010. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tissue Engineering Part C 16: 771–81. DOI: https://doi.org/10.1089/ten.tec.2009.0512

Marycz K, Pielok A and Kornicka-Garbowska K. 2021. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + - a novel dermal/epidermal stem cell population with a potential critical role for laminitis treatment. Stem Cell Reviews and Reports 17(4): 1478–85. DOI: https://doi.org/10.1007/s12015-021-10187-x

Marycz K, Smieszek A, Grzesiak J and Nicpon J E. 2014. Effects of steroids on the morphology and proliferation of canine and equine mesenchymal stem cells of adipose origin - in vitro research. Acta Veterinaria Hungarica 62(3): 317–33. DOI: https://doi.org/10.1556/avet.2014.001

Marycz K, Kornicka K, Basinska K and Czyrek A. 2016a. Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: New Insight into EqASCs Isolated from EMS Horses in the context of their aging. Oxidative Medicine and Cellular Longevity 4710326. DOI: https://doi.org/10.1155/2016/4710326

Marycz K, Kornicka K, Marędziak M, Golonka P and Nicpon J E. 2016b. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. Journal of Cellular and Molecular Medicine 20(12): 2384–404. DOI: https://doi.org/10.1111/jcmm.12932

Mediano D R, Sanz-Rubio D, Bolea R, Marin B, Vazquez F J, Remacha A R, pez-Pe rez O, Fernandez-Borges N, Castilla J, Zaragoza P, Badiola J J, Rodellar C and Martin-Burriel I. 2015. Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. Journal of General Virology 96: 3715–26. DOI: https://doi.org/10.1099/jgv.0.000292

Mitchell A, Rivas K A, Smith III R and Watts A E. 2015. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. Stem Cell Research Therapy 6: 231. DOI: https://doi.org/10.1186/s13287-015-0230-y

Mohanty N, Gulati B R, Kumar R, Gera S, Kumar S, Kumar P and Yadav P S. 2016. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood. Cytotechnology 68: 795–807. DOI: https://doi.org/10.1007/s10616-014-9831-z

Morente-Lopez M, Fafian-Labora J A, Carrera M, de Toro F J, Gil C, Mateos J and Arufe M C. 2021. Mesenchymal stem cell-derived extracellular vesicle isolation and their protein cargo characterization. Methods of Molecular Biology 2259: 3–12. DOI: https://doi.org/10.1007/978-1-0716-1178-4_1

Mund S J K, Kawamura E, Awang-Junaidi A H, Campbell J, Wobeser B, MacPhee D J, Honaramooz A and Barber S. 2020. Homing and engraftment of intravenously administered equine cord blood-derived multipotent mesenchymal stromal cells to surgically created cutaneous wound in horses: A pilot project. Cells 9: 1162. DOI: https://doi.org/10.3390/cells9051162

Nam A, Han S M, Go D M, Kim D Y, Seo K W and Youn H Y. 2017. Long-term management with adipose tissue-derived mesenchymal stem cells and conventional treatment in a dog with hepatocutaneous syndrome. Journal of Veterinary Internal Medicine 31: 1514–19. DOI: https://doi.org/10.1111/jvim.14798

Navarrete F, Saravia F, Cisterna G, Rojas F, Silva P P, Rodriguez- Alvarez L, Rojas D, Cabezas J, Mancanares A C F and Castro F O. 2020. Assessment of the anti-inflammatory and engraftment potential of horse endometrial and adipose mesenchymal stem cells in an in vivo model of post breeding induced endometritis. Theriogenology 155: 33–42. DOI: https://doi.org/10.1016/j.theriogenology.2020.06.010

Nawrocka D, Kornicka K, Smieszek A and Marycz K. 2017. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and enhances insulin sensitivity in Equine Metabolic Syndrome (EMS) Horses. Marine Drugs 15: 237. DOI: https://doi.org/10.3390/md15080237

Nissar S, Ramesh G, Basha S H, Balachandran C and Leela V. 2018. Isolation of feline adipose tissue derived mesenchymal stem cells. International Journal of Current Microbiology and Applied Sciences 7(3): 553–57. DOI: https://doi.org/10.20546/ijcmas.2018.703.066

Oh H J, Park J E, Kim M J, Hong S G, Ra J C, Jo J Y, Kang S K, Jang G and Lee B C. 2011. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221–31. DOI: https://doi.org/10.1016/j.theriogenology.2010.11.035

Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tarnok A and Burk J. 2014. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: An approach toward a standardized definition. Cytometry A 85: 678–87. DOI: https://doi.org/10.1002/cyto.a.22491

Park S S, Lee Y J, Lee S H, Lee D, Choi K, Kim W H, Kweon O K and Han H J. 2012. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal stem cells. Cytotherapy 14: 584–97. DOI: https://doi.org/10.3109/14653249.2012.658913

Peer B A, Bhat A R, Shabir U, Bharti M K, Bhat I A, Sharun K, Kumar Rohit, Mathesh K, Chandra V, Amarpal and Sharma G T. 2022. Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. Tissue and Cell 76(June): 101768. DOI: https://doi.org/10.1016/j.tice.2022.101768

Peng S Y, Chou C W, Kuo Y H, Shen P C and Shaw S W S. 2017. Potential differentiation of Islet like cells from pregnant cow derived placental stem cells. Taiwanese Journal of Obstetrics and Gynaecology 56: 306–11. DOI: https://doi.org/10.1016/j.tjog.2017.04.007

Perez-Merino E M, Uson-Casaus J M, Zaragoza-Bayle C, Duque- Carrasco J, Marinas-Pardo L, Hermida-Prieto M, Barrera- Chacon R and Gualtieri M. 2015a. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. The Veterinary Journal 206: 385–90. DOI: https://doi.org/10.1016/j.tvjl.2015.08.003

Phan J, Kumar P, Hao D, Gao K, Farmer D and Wang A. 2018. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. Journal of Extracellular Vesicles 7(1): 1522236. DOI: https://doi.org/10.1080/20013078.2018.1522236

Pogue B, Estrada A H, Sosa-Samper I, Maisenbacher H W, Lamb K E, Mince B D, Erger K E and Conlon T J. 2013. Stem-cell therapy for dilated cardiomyopathy: A pilot study evaluating retrograde coronary venous delivery. Journal of Small Animal Practice 54: 361–66. DOI: https://doi.org/10.1111/jsap.12098

Pratheesh M D, Gade N E, Katiyar A N, Dubey P K, Sharma B, Saikumar G, Amarpal and Sharma G T. 2013. Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Research in Veterinary Science 94(2): 313–19. DOI: https://doi.org/10.1016/j.rvsc.2012.08.002

Pratheesh M D, Gade N E, Nath A, Dubey P K, Sivanarayanan T B, Madhu D N, Sreekumar T R, Amarpal, Saikumar G and Sharma G T. 2017. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model. Cytotechnology 69(6): 841–49. DOI: https://doi.org/10.1007/s10616-017-0097-0

Pratheesh M D, Gade N E, Dubey P K, Nath A, Sivanarayanan T B, Madhu D N, Sharma B, Amarpal, Saikumar G and Sharma G T. 2014. Molecular characterization and xenogenic application of Wharton’s jelly derived caprine mesenchymal stem cells. Veterinary Research Communications 38(2): 139–48. DOI: https://doi.org/10.1007/s11259-014-9597-y

Rafee M A, Amarpal, Chandra V, Sharma G T and Kinjavdekar P. 2017. Mesenchymal Stem Cell Therapy for Chronic Wound Healing in Dogs. Intas Polivet 18: 130–33.

Ragni E, Banfi F, Barilani M, Cherubini A, Parazzi V, Larghi P, Dolo V, Bollati V and Lazzari L. 2017. Extracellular vesicle-shuttled mRNA in mesenchymal stem cell communication. Stem Cells 35(4): 1093–1105. DOI: https://doi.org/10.1002/stem.2557

Ranera B, Lyahyai J, Romeroa A, Vázquez F J, Rosa Remacha A, Bernal M L, Zaragoza P, Rodellar C and Martin-Burriel I. 2011. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Veterinary Immunology Immunopathology 144: 147–54. DOI: https://doi.org/10.1016/j.vetimm.2011.06.033

Rathore N S, Kashyap S K, Deora A, Kumar P, Singh J, Tripathi B N and Talluri T R. 2018. Isolation and culture of putative mesenchymal stem cells from equine umbilical cord Wharton’s jelly. Indian Journal of Animal Sciences 88(9): 1025–29.

Sahoo A K, Das J K and Nayak S. 2017. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell. Veterinary World 10(12): 1533–41. DOI: https://doi.org/10.14202/vetworld.2017.1533-1541

Sampaio R V, Chiaratti M R, Santos D C N, Bressan F F, Sangalli J R, Sa A L A, Silva T V G, Costa N N, Cordeiro M S, Santos S S D, Ambrosio C E, Adona P R, Meirelles F V, Miranda M S and Ohashi O M. 2015. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genetics and Molecular Research 14(1): 53–62. DOI: https://doi.org/10.4238/2015.January.15.7

Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, Koga H, Mochizuki M and Sekiya I. 2018. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infra patellar fat pad, adipose tissue, and bone marrow. Public Library of Science ONE 13(8): 0202922. DOI: https://doi.org/10.1371/journal.pone.0202922

Sharun K, Kumar R, Chandra V, Saxena A C, Pawde A M, Kinjavdekar P, Dhama K, Amarpal and Sharma G T. 2021. Percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells for the management of paraplegia secondary to Hansen type I intervertebral disc herniation in a Beagle dog. Iranian Journal of Veterinary Research 22(2): 161–66.

Sharun K, Rawat T, Kumar R, Chandra V, Saxena A C, Pawde A M, Kinjavdekar P, Amarpal and Sharma G T. 2020. Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Veterinary Animal Sciences 16(10): 100152. DOI: https://doi.org/10.1016/j.vas.2020.100152

Singh J, Mann A, Kumar D, Duhan J S and Yadav P S. 2013. Cultured buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells. In Vitro Cellular and Developmental Biology-Animal 49: 408–16. DOI: https://doi.org/10.1007/s11626-013-9617-1

Smith R K W, Korda M, Blunn G W and Goodship A E. 2003. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Veterinary Journal 35: 99–102. DOI: https://doi.org/10.2746/042516403775467388

Somal A, Bhat I A, Baiju I, Pandey S, Panda B S K, Thakur N, Sarkar M, Chandra V, Saikumar G and Sharma G T. 2016. A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. Public Library of Science One 11(6): e0156821. DOI: https://doi.org/10.1371/journal.pone.0156821

Somal A, Bhat I A, Baiju I, Singh A P, Panda B S K, Desingu P A, Pandey S , Bharti, M K, Pal A, Saikumar G, Chandra V and Sharma G T. 2017. Impact of cryopreservation on caprine fetal adnexa derived stem cells and its evaluation for growth kinetics, phenotypic characterization and wound healing potential in xenogenic rat model. Journal of Cellular Physiology 232(8): 2186–2200. DOI: https://doi.org/10.1002/jcp.25731

Song J, Kim Y, Kweon O K and Kang B J. 2017. Use of stem-cell sheets expressing bone morphogenetic protein-7 in the management of a non-union radial fracture in a Toy Poodle. Journal of Veterinary Science 18(4): 555–58. DOI: https://doi.org/10.4142/jvs.2017.18.4.555

Spaas J H, Broeckx S, Van de Walle G R and Polettini M. 2013. The effects of equine peripheral blood stem cells on cutaneous wound healing: A clinical evaluation in four horses. Clinical and Experimental Dermatology 38: 280–84. DOI: https://doi.org/10.1111/ced.12068

Spees J L, Lee R H and Gregory C A. 2016. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research and Therapy 7: 125. DOI: https://doi.org/10.1186/s13287-016-0363-7

Sreekumar T R, Ansari M M, Chandra V G and Sharma T. 2014. Isolation and Characterization of Buffalo Wharton’s Jelly Derived Mesenchymal Stem Cells. Journal of Stem Cell Research and Therapy 4: 207.

Stewart M C and Stewart A A. 2011. Mesenchymal stem cells: characteristics, sources, mechanisms of action. Veterinary Clinics North America: Equine Practice 27: 243–61. DOI: https://doi.org/10.1016/j.cveq.2011.06.004

Takewaki M, Kajiya M, Takeda K, Sasaki S, Motoike S, Komatsu N, Matsuda S, Ouhara K, Mizuno N, Fujita T and Kurihara H. 2017. MSC/ECM cellular complexes induce periodontal tissue regeneration. Journal of Dental Research 96(9): 984–91. DOI: https://doi.org/10.1177/0022034517708770

Taroni M, Cabon Q, Febre M, Cachon T, Saulnier N, Carozzo C, Maddens S, Labadie F, Robert C and Viguier E. 2017. Evaluation of the effect of a single intra-articular injection of allogeneic neonatal mesenchymal stromal cells compared to oral non-steroidal anti-inflammatory treatment on the postoperative musculoskeletal status and gait of dogs over a 6-month period after tibial plateau leveling osteotomy: A pilot study. Frontiers in Veterinary Science 4: 83. DOI: https://doi.org/10.3389/fvets.2017.00083

Tessier L, Bienzle D, Williams L B and Koch T G. 2015. Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells. Public Library of Science One 10(4): 0122954. DOI: https://doi.org/10.1371/journal.pone.0122954

Ting W J, Shaw S W, Hii L Y, Lin T Y, Chang S C, Liu K Y, Shen P C, Chen T J and Peng S Y. 2020. Therapeutic effects of conditioned e DPBS from amniotic stem cells on lactating cow mastitis. Taiwan Journal of Obstetrics and Gynaecology 59: 520–26. DOI: https://doi.org/10.1016/j.tjog.2020.05.009

Tiwary R. 2011. ‘Evaluation of nucleated marrow cells along with tgf-β1 / igf-1 for cartilage and nerve repair in rabbits.’ Thesis submitted to IVRI, Izatnagar Tsuzuki N, Nakao S, Seo J P, Yamada K, Haneda S, Furuoka H, Tabata Y and Sasaki N. 2014. Effect of biodegradable gelatin β-tri calcium phosphate sponges containing mesenchymal stem cells and bone morphogenetic protein-2 on equine bone defect. Journal of Equine Veterinary Sciences 34(7): 903–10. DOI: https://doi.org/10.1016/j.jevs.2014.03.006

Udehiya R K, Amarpal, Aithal H P, Kinjavdekar P, Pawde A M, Singh R and Sharma G T. 2013. Comparison of autogenic and allogeneic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Research in Veterinary Sciences 94(3): 743–52. DOI: https://doi.org/10.1016/j.rvsc.2013.01.011

USFDA. 2018. https://www.fda.gov/downloads/AnimalVeterinary/ GuidanceComplianceEnforcement/GuidanceforIndustry/ UCM405679.pdf. Updated 2015. Accessed 2018 Sep 12.

Vieira N M, Brandalise V, Zucconi E, Secco M, Strauss B E and Zatz M. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplantation 19: 279–89. DOI: https://doi.org/10.3727/096368909X481764

Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E and Cizkova D. 2020. Stem cell conditioned medium treatment for canine spinal cord injury: Pilot feasibility study. International Journal of Molecular Science 21(14): 5129. DOI: https://doi.org/10.3390/ijms21145129

Villatoro A J, Claros S, Fernandez V, Alcoholado C, Farinas F, Moreno A, Becerra J and Andrades J A. 2018. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BioMed Central Veterinary Research 14: 116. DOI: https://doi.org/10.1186/s12917-018-1413-4

Villatoro A J, Fernandez V, Claros S, Rico-Llanos G A, Becerra J and Andrades J A. 2015. Use of adipose-derived mesenchymal stem cells in Keratoconjunctivitis Sicca in a canine model. BioMed Research International. DOI: https://doi.org/10.1155/2015/527926

Volk S W, Wang Y and Hankenson K D. 2012. Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: Implications for MSC-based therapies. Cell Transplantation 21: 2189–2200. DOI: https://doi.org/10.3727/096368912X636821

Watanabe Y, Tsuchiya A and Terai S. 2020. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clinical Molecular Hepatology 27(1): 70–80. DOI: https://doi.org/10.3350/cmh.2020.0194

Webb T L and Webb C B. 2015. Stem cell therapy in cats with chronic enteropathy: A proof-of-concept study. Journal of Feline Medicine and Surgery 17(10): 901–08. DOI: https://doi.org/10.1177/1098612X14561105

Whitworth D J, Ovchinnikov D A, Sun J, Fortuna P R and Wolvetang E J. 2014. Generation and characterization of LIF-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Development 23: 1515–23. DOI: https://doi.org/10.1089/scd.2013.0461

Xiong H, Bai C, Wu S, Gao Y, Lu T, Hu Q, Guan W and Ma Y. 2014. Biological characterization of Mesenchymal stem cells from bovine umbilical cord. Animal Cells Systems 1(1): 59–67. DOI: https://doi.org/10.1080/19768354.2014.880370

Yadav P S, Mann A, Singh V, Yashveer S, Sharma R K and Singh I. 2011. Expression of pluripotency genes in buffalo (Bubalus bubalis) amniotic fluid cells. Reproduction in Domestic Animals 46(4): 705–11. DOI: https://doi.org/10.1111/j.1439-0531.2010.01733.x

Yang V K, Meola D M, Davis A, Barton B and Hoffman A M. Intravenous administration of allogeneic Wharton jelly– derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. American Journal of Veterinary Research 82(6): 487–93. DOI: https://doi.org/10.2460/ajvr.82.6.487

Zeira O, Asiag N, Aralla M, Ghezzi E, Pettinari L, Martinelli L, Zahirpour D, Dumas M P, Lupi D, Scaccia S, Konar M and Cantile C. 2015. Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: safety, feasibility and preliminary clinical findings. Journal of Neuroinflammation 12: 181. DOI: https://doi.org/10.1186/s12974-015-0402-9

Zhao L, Wang Z, Zhang J, Yang J, Gao X F, Wu B, Zhao G, Bao S, Hu S, Liu P and Li X. 2017. Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue and Cell 49(5): 521–27. DOI: https://doi.org/10.1016/j.tice.2017.05.005

Zubin E, Conti V, Leonardi F, Zanichelli S, Ramoni R and Grolli S. 2015. Regenerative therapy for the management of a large skin wound in a dog. Clinical Case Reports 3(7): 598–603. DOI: https://doi.org/10.1002/ccr3.253

Zuk P, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P and Hedrick M H. 2001. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering 7: 211–28. DOI: https://doi.org/10.1089/107632701300062859

Downloads

Submitted

2021-09-18

Published

2022-03-21

Issue

Section

Review Article

How to Cite

Gugjoo, M. B., Farooq, F., Sakeena, Q., Dar, E. R., Khan, S., Amarpal, A., Parrah, J. ud D., Makhdoomi, D. M., Dhama, K., & Sharma, G. T. (2022). Stem Cell Therapeutics in veterinary medicine in India. The Indian Journal of Animal Sciences, 92(5), 533-544. https://doi.org/10.56093/ijans.v92i5.115586
Citation