Milk peptide induced miRNA-369 facilitates bone functions in the rat osteoblasts
273 / 142
Keywords:
Animal, Bone, miRNAs, Osteoblast, PeptideAbstract
The animal’s health and productivity is chiefly influenced by its anatomy and physiology. Moreover, bone growth in animals is also associated to overall health and production. Besides, bone fractures accounts to constrained food intake, reduced immune function and general productivity losses. In poultry animals, bone deformities, renders severe costs in the meat production and egg quality. The treatment for various bone related issues is both time and capital seeking. Besides, currently available therapies, i.e. bisphosphonates, raloxifene are associated with various side effects like jaw osteonecrosis, vaginal bleeding etc. The present study reports the bone promoting effect in milk peptide induced miRNA, miR369. Findings represents an enhanced bone proliferation and differentiation under the influence of miR369 in in vitro rat osteoblasts culture. The bone marker enzyme alkaline phosphatase and osteoblast specific protein expression were tested using ELISA. miR369 significantly stimulated the marker protein levels. Additionally, miR369 when injected to neonatal rat pups, showed improved osteoblast marker gene(s) expression. The study demonstrates the positive role of miR369 in the bone functions and hence, advocates its functional utility for the management of various bone ailments prevailing in animals and/or humans. Besides miR369, a putative molecular gene therapeutic agent can prove revolutionary in controlling the animal health losses ascribed to deteriorating bone health.Downloads
References
Ahn C B and Je J Y. 2019. Bone health promoting bioactive peptides. Journal of Food Biochemistry 43(1): 12529. DOI: https://doi.org/10.1111/jfbc.12529
Alvarez Garcia I and Miska E A. 2005. MicroRNA functions in animal development and human disease. Development DOI: https://doi.org/10.1242/dev.02073
(21): 4653–62.
Anusha R and Bindhu O S. 2016. Bioactive peptides from milk. Milk Proteins. 1st Edn, pp. 1778–2210. Intech Open Limited. United Kingdom. DOI: https://doi.org/10.5772/62993
Behera P, Kumar R, Sandeep I V R, Kapila R, Dang A K and Kapila S. 2013. Casein hydrolysates enhance osteoblast
proliferation and differentiation in mouse bone marrow culture. Food Bioscience 2: 24–30. DOI: https://doi.org/10.1016/j.fbio.2013.03.008
Bork S, Horn P, Castoldi M, Hellwig I, Ho A D and Wagner W. 2011. Adipogenic differentiation of human mesenchymal
stromal cells is down regulated by microRNA 369 5p and up regulated by microRNA 371. Journal of Cellular Physiology 226(9): 2226–34.
Chakrabarti S and Wu J. 2015. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte
differentiation and inhibit inflammation in 3T3-F442A cells. PLoS ONE 10(2): 0117492. DOI: https://doi.org/10.1371/journal.pone.0117492
Chen S, Yang L, Jie Q, Lin Y S, Meng G L, Fan J Z, Zhang J K, Fan J, Luo Z J and Liu J. 2014. MicroRNA 125b suppresses
the proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Molecular Medicine Reports 9(5): 1820–26. DOI: https://doi.org/10.3892/mmr.2014.2024
Eastell R, O’Neill T W, Hofbauer L C, Langdahl B, Reid I R, Gold D T and Cummings S R. 2016. Postmenopausal
osteoporosis. Nature Reviews Disease Primers 2(1): 1–16.
Gebert L F and MacRae I J. 2019. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology, DOI: https://doi.org/10.1038/s41580-018-0045-7
(1): 21–37.
Hak D J. 2018. The biology of fracture healing in osteoporosis and in the presence of anti-osteoporotic drugs. Injury 49(8): 1461–65. DOI: https://doi.org/10.1016/j.injury.2018.04.016
Ishimi Y. 2015. Osteoporosis and lifestyle. Journal of Nutritional Science and Vitaminology 61(Supplement): S139–S141. DOI: https://doi.org/10.3177/jnsv.61.S139
Karagkouni D, Paraskevopoulou M D, Tastsoglou S, Skoufos G, Karavangeli A, Pierros V, Zacharopoulou E and Hatzigeorgiou A G. 2020. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Research 48(D1): D101–D110. DOI: https://doi.org/10.1093/nar/gkz1036
Karpouzos A, Diamantis E, Farmaki P, Savvanis S and Troupis T. 2017. Nutritional aspects of bone health and fracture healing. Journal of Osteoporosis. DOI: https://doi.org/10.1155/2017/4218472
Katagiri T and Watabe T. 2016. Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology 8(6): 021899. DOI: https://doi.org/10.1101/cshperspect.a021899
Kaur T, Kapila R and Kapila S.2020. MicroRNAs as Next Generation Therapeutics in Osteoporosis. Clinical Implementation of Bone Regeneration and Maintenance. 1st Edn, pp. 171. Intech Open Limited. United Kingdom. DOI: https://doi.org/10.5772/intechopen.91223
Kaur T, Kapila S, Kapila R, Kumar S, Upadhyay D, Kaur M and Sharma C. 2021. Tmprss2 specific miRNAs as promising
regulators for SARS-CoV-2 entry checkpoint. Virus Research 294:198275. DOI: https://doi.org/10.1016/j.virusres.2020.198275
Kaur T, John A A, Sharma C, Vashisht N K, Singh D, Kapila R and Kapila S. 2021. miR300 intervenes Smad3/-catenin/
RunX2 crosstalk for therapy with an alternate function as indicative biomarker in osteoporosis. Bone 143: 115603. DOI: https://doi.org/10.1016/j.bone.2020.115603
Krastev S, Simeonov R and Goranov N. 2015. Craniomandibular osteopathy in a Bulgarian shepherd dog-case report. Trakia Journal of Sciences 13: 292–95. DOI: https://doi.org/10.15547/tjs.2015.s.02.063
Krishnan V, Bryant H U and MacDougald O A. 2006. Regulation of bone mass by Wnt signaling. Journal of Clinical DOI: https://doi.org/10.1172/JCI28551
Investigation 116(5): 1202–09.
Laxman N, Mallmin H, Nilsson O and Kindmark A. 2017. miR-203 and miR-320 regulate bone morphogenetic protein-2-induced osteoblast differentiation by targeting distal-less homeobox 5 (Dlx5). Genes 8(1): 4. DOI: https://doi.org/10.3390/genes8010004
Li X, Ji J, Wei W and Liu L. 2018. MiR-25 promotes proliferation, differentiation and migration of osteoblasts by up-regulating Rac1 expression. Biomedicine and Pharmacotherapy 99: 622–28. DOI: https://doi.org/10.1016/j.biopha.2018.01.103
Liu T J and Guo J L. 2020. Overexpression of microRNA-141 inhibits osteoporosis in the jawbones of ovariectomized rats by regulating the Wnt/-catenin pathway. Archives of Oral Biology 113: 104713. DOI: https://doi.org/10.1016/j.archoralbio.2020.104713
Lupsa B C and Insogna K. 2015. Bone health and osteoporosis. Endocrinology and Metabolism Clinics 44(3): 517–30. DOI: https://doi.org/10.1016/j.ecl.2015.05.002
Mada S B, Reddi S, Kumar N, Kumar R, Kapila S, Kapila R, Trivedi R, Karvande A and Ahmad N. 2017. Antioxidative
peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition 43: 21–31. DOI: https://doi.org/10.1016/j.nut.2017.06.010
Mada S B, Ugwu C P and Abarshi M M. 2019. Health promoting effects of food-derived bioactive peptides: A review. DOI: https://doi.org/10.1007/s10989-019-09890-8
International Journal of Peptide Research and Therapeutics 26: 831–48.
Martínez Villaluenga C and Hernández-Ledesma B. 2020. Peptides for Health Benefits. International Journal of DOI: https://doi.org/10.3390/ijms21072543
Molecular Science 21: 2543.
Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1–2): 55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4
NakasaT, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E and Ochi M. 2015. MicroRNAs and bone regeneration. DOI: https://doi.org/10.2174/1389202916666150522220727
Current Genomics 16(6): 441–52.
Nakashima A, Katagiri T and Tamura M. 2005. Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. Journal of Biological Chemistry 280(45): 37660–668. DOI: https://doi.org/10.1074/jbc.M504612200
O’Brien J, Hayder H, Zayed Y and Peng C. 2018. Overview of microRNA biogenesis, mechanisms of actions and circulation. Frontiers in Endocrinology 9: 402. DOI: https://doi.org/10.3389/fendo.2018.00402
Pandey M, Kapila R and Kapila S. 2018. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and
angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides 99: 1–7. DOI: https://doi.org/10.1016/j.peptides.2017.11.004
Paul S, Bravo Vázquez L A, Pérez Uribe S, Roxana Reyes-Pérez P and Sharma A. 2020. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells 9(7): 1698. DOI: https://doi.org/10.3390/cells9071698
Reddi S, Shanmugam V P, Kapila S and Kapila R. 2016. Identification of buffalo casein-derived bioactive peptides with DOI: https://doi.org/10.1007/s00217-016-2710-4
osteoblast proliferation activity. European Food Research and Technology 242(12): 2139–46.
Reddi S, Shanmugam V P, Tanedjeu K S, Kapila S and Kapila R. 2018. Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation. European Journal of Nutrition 57(2): 593–605. DOI: https://doi.org/10.1007/s00394-016-1346-2
Scalavino V, Liso M, Cavalcanti E, Gigante I, Lippolis A, Mastronardi M, Chieppa M and Serino G. 2020. miR-369–3p
modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response. Scientific
Reports 10(1): 1–10.
Shanmugam V P, Kapila S, Sonfack T K and Kapila R. 2015. Antioxidative peptide derived from enzymatic digestion of DOI: https://doi.org/10.1016/j.idairyj.2014.11.001
buffalo casein. International Dairy Journal 42: 1–5.
Smieszek A, Marcinkowska K, Pielok A, Sikora M, Valihrach L and Marycz K. 2020. The role of miR-21 in Osteoblasts–
Osteoclasts Coupling in vitro. Cells 9(2): 479.
Taylor S E, Shah M and Orriss I R. 2014. Generation of rodent and human osteoblasts. BoneKey Reports 3: 585. DOI: https://doi.org/10.1038/bonekey.2014.80
Tran T H and Montano M A. 2017. MicroRNAs: Mirrors of Health and Disease. Translating MicroRNAs to the Clinic, 1–15. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-800553-8.00001-9
Upadhyay D, Kaur T, Kapila R and Kapila S. 2020. Repertoire of structure–activity-based novel modified peptides elicits enhanced osteogenic potential. Journal of Agricultural and Food Chemistry 68(31): 8308–20. DOI: https://doi.org/10.1021/acs.jafc.0c03385
Vij R. 2017. ‘MicroRNA Delineation During Osteoblast Differentiation Induced by Milk Derived Peptide’. PhD Thesis, National Dairy Research Institute, Karnal, Haryana.
Vij R, Reddi S, Kapila S and Kapila R. 2016. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food DOI: https://doi.org/10.1016/j.foodchem.2015.05.121
Chemistry 190: 681–88.
Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C, Ji F and Tang H. 2020. miR-143 promotes angiogenesis and osteoblast
differentiation by targeting HDAC7. Cell Death and Disease 11(3): 1–15.
Woods A, Bresalier M, Cassidy A and Mason Dentinger R. 2017. Animals and the shaping of modern medicine: One health and its histories, Springer Nature 90 pp. DOI: https://doi.org/10.1007/978-3-319-64337-3
Xiaoling G, Shuaibin L and Kailu L. 2020. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Medical Genetics 21(1): 1–8. DOI: https://doi.org/10.1186/s12881-020-0948-y
Yang F, Huang R, Ma H, Zhao X and Wang G. 2020. miRNA-411 regulates chondrocyte autophagy in osteoarthritis by targeting hypoxia-inducible factor 1 alpha (HIF-1). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 26: 921155-1-921155-7. DOI: https://doi.org/10.12659/MSM.921155
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2021 The Indian Journal of Animal Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Animal Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.