Milk peptide induced miRNA-369 facilitates bone functions in the rat osteoblasts


273 / 142

Authors

  • TARUNEET KAUR ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
  • DIVYA UPADHYAY ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
  • RISHIKA VIJ ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
  • RAJEEV KAPILA ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
  • SUMAN KAPILA ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India

https://doi.org/10.56093/ijans.v91i8.115921

Keywords:

Animal, Bone, miRNAs, Osteoblast, Peptide

Abstract

The animal’s health and productivity is chiefly influenced by its anatomy and physiology. Moreover, bone growth in animals is also associated to overall health and production. Besides, bone fractures accounts to constrained food intake, reduced immune function and general productivity losses. In poultry animals, bone deformities, renders severe costs in the meat production and egg quality. The treatment for various bone related issues is both time and capital seeking. Besides, currently available therapies, i.e. bisphosphonates, raloxifene are associated with various side effects like jaw osteonecrosis, vaginal bleeding etc. The present study reports the bone promoting effect in milk peptide induced miRNA, miR369. Findings represents an enhanced bone proliferation and differentiation under the influence of miR369 in in vitro rat osteoblasts culture. The bone marker enzyme alkaline phosphatase and osteoblast specific protein expression were tested using ELISA. miR369 significantly stimulated the marker protein levels. Additionally, miR369 when injected to neonatal rat pups, showed improved osteoblast marker gene(s) expression. The study demonstrates the positive role of miR369 in the bone functions and hence, advocates its functional utility for the management of various bone ailments prevailing in animals and/or humans. Besides miR369, a putative molecular gene therapeutic agent can prove revolutionary in controlling the animal health losses ascribed to deteriorating bone health.

Downloads

Download data is not yet available.

References

Ahn C B and Je J Y. 2019. Bone health promoting bioactive peptides. Journal of Food Biochemistry 43(1): 12529. DOI: https://doi.org/10.1111/jfbc.12529

Alvarez Garcia I and Miska E A. 2005. MicroRNA functions in animal development and human disease. Development DOI: https://doi.org/10.1242/dev.02073

(21): 4653–62.

Anusha R and Bindhu O S. 2016. Bioactive peptides from milk. Milk Proteins. 1st Edn, pp. 1778–2210. Intech Open Limited. United Kingdom. DOI: https://doi.org/10.5772/62993

Behera P, Kumar R, Sandeep I V R, Kapila R, Dang A K and Kapila S. 2013. Casein hydrolysates enhance osteoblast

proliferation and differentiation in mouse bone marrow culture. Food Bioscience 2: 24–30. DOI: https://doi.org/10.1016/j.fbio.2013.03.008

Bork S, Horn P, Castoldi M, Hellwig I, Ho A D and Wagner W. 2011. Adipogenic differentiation of human mesenchymal

stromal cells is down regulated by microRNA 369 5p and up regulated by microRNA 371. Journal of Cellular Physiology 226(9): 2226–34.

Chakrabarti S and Wu J. 2015. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte

differentiation and inhibit inflammation in 3T3-F442A cells. PLoS ONE 10(2): 0117492. DOI: https://doi.org/10.1371/journal.pone.0117492

Chen S, Yang L, Jie Q, Lin Y S, Meng G L, Fan J Z, Zhang J K, Fan J, Luo Z J and Liu J. 2014. MicroRNA 125b suppresses

the proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Molecular Medicine Reports 9(5): 1820–26. DOI: https://doi.org/10.3892/mmr.2014.2024

Eastell R, O’Neill T W, Hofbauer L C, Langdahl B, Reid I R, Gold D T and Cummings S R. 2016. Postmenopausal

osteoporosis. Nature Reviews Disease Primers 2(1): 1–16.

Gebert L F and MacRae I J. 2019. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology, DOI: https://doi.org/10.1038/s41580-018-0045-7

(1): 21–37.

Hak D J. 2018. The biology of fracture healing in osteoporosis and in the presence of anti-osteoporotic drugs. Injury 49(8): 1461–65. DOI: https://doi.org/10.1016/j.injury.2018.04.016

Ishimi Y. 2015. Osteoporosis and lifestyle. Journal of Nutritional Science and Vitaminology 61(Supplement): S139–S141. DOI: https://doi.org/10.3177/jnsv.61.S139

Karagkouni D, Paraskevopoulou M D, Tastsoglou S, Skoufos G, Karavangeli A, Pierros V, Zacharopoulou E and Hatzigeorgiou A G. 2020. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Research 48(D1): D101–D110. DOI: https://doi.org/10.1093/nar/gkz1036

Karpouzos A, Diamantis E, Farmaki P, Savvanis S and Troupis T. 2017. Nutritional aspects of bone health and fracture healing. Journal of Osteoporosis. DOI: https://doi.org/10.1155/2017/4218472

Katagiri T and Watabe T. 2016. Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology 8(6): 021899. DOI: https://doi.org/10.1101/cshperspect.a021899

Kaur T, Kapila R and Kapila S.2020. MicroRNAs as Next Generation Therapeutics in Osteoporosis. Clinical Implementation of Bone Regeneration and Maintenance. 1st Edn, pp. 171. Intech Open Limited. United Kingdom. DOI: https://doi.org/10.5772/intechopen.91223

Kaur T, Kapila S, Kapila R, Kumar S, Upadhyay D, Kaur M and Sharma C. 2021. Tmprss2 specific miRNAs as promising

regulators for SARS-CoV-2 entry checkpoint. Virus Research 294:198275. DOI: https://doi.org/10.1016/j.virusres.2020.198275

Kaur T, John A A, Sharma C, Vashisht N K, Singh D, Kapila R and Kapila S. 2021. miR300 intervenes Smad3/-catenin/

RunX2 crosstalk for therapy with an alternate function as indicative biomarker in osteoporosis. Bone 143: 115603. DOI: https://doi.org/10.1016/j.bone.2020.115603

Krastev S, Simeonov R and Goranov N. 2015. Craniomandibular osteopathy in a Bulgarian shepherd dog-case report. Trakia Journal of Sciences 13: 292–95. DOI: https://doi.org/10.15547/tjs.2015.s.02.063

Krishnan V, Bryant H U and MacDougald O A. 2006. Regulation of bone mass by Wnt signaling. Journal of Clinical DOI: https://doi.org/10.1172/JCI28551

Investigation 116(5): 1202–09.

Laxman N, Mallmin H, Nilsson O and Kindmark A. 2017. miR-203 and miR-320 regulate bone morphogenetic protein-2-induced osteoblast differentiation by targeting distal-less homeobox 5 (Dlx5). Genes 8(1): 4. DOI: https://doi.org/10.3390/genes8010004

Li X, Ji J, Wei W and Liu L. 2018. MiR-25 promotes proliferation, differentiation and migration of osteoblasts by up-regulating Rac1 expression. Biomedicine and Pharmacotherapy 99: 622–28. DOI: https://doi.org/10.1016/j.biopha.2018.01.103

Liu T J and Guo J L. 2020. Overexpression of microRNA-141 inhibits osteoporosis in the jawbones of ovariectomized rats by regulating the Wnt/-catenin pathway. Archives of Oral Biology 113: 104713. DOI: https://doi.org/10.1016/j.archoralbio.2020.104713

Lupsa B C and Insogna K. 2015. Bone health and osteoporosis. Endocrinology and Metabolism Clinics 44(3): 517–30. DOI: https://doi.org/10.1016/j.ecl.2015.05.002

Mada S B, Reddi S, Kumar N, Kumar R, Kapila S, Kapila R, Trivedi R, Karvande A and Ahmad N. 2017. Antioxidative

peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition 43: 21–31. DOI: https://doi.org/10.1016/j.nut.2017.06.010

Mada S B, Ugwu C P and Abarshi M M. 2019. Health promoting effects of food-derived bioactive peptides: A review. DOI: https://doi.org/10.1007/s10989-019-09890-8

International Journal of Peptide Research and Therapeutics 26: 831–48.

Martínez Villaluenga C and Hernández-Ledesma B. 2020. Peptides for Health Benefits. International Journal of DOI: https://doi.org/10.3390/ijms21072543

Molecular Science 21: 2543.

Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1–2): 55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

NakasaT, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E and Ochi M. 2015. MicroRNAs and bone regeneration. DOI: https://doi.org/10.2174/1389202916666150522220727

Current Genomics 16(6): 441–52.

Nakashima A, Katagiri T and Tamura M. 2005. Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. Journal of Biological Chemistry 280(45): 37660–668. DOI: https://doi.org/10.1074/jbc.M504612200

O’Brien J, Hayder H, Zayed Y and Peng C. 2018. Overview of microRNA biogenesis, mechanisms of actions and circulation. Frontiers in Endocrinology 9: 402. DOI: https://doi.org/10.3389/fendo.2018.00402

Pandey M, Kapila R and Kapila S. 2018. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and

angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides 99: 1–7. DOI: https://doi.org/10.1016/j.peptides.2017.11.004

Paul S, Bravo Vázquez L A, Pérez Uribe S, Roxana Reyes-Pérez P and Sharma A. 2020. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells 9(7): 1698. DOI: https://doi.org/10.3390/cells9071698

Reddi S, Shanmugam V P, Kapila S and Kapila R. 2016. Identification of buffalo casein-derived bioactive peptides with DOI: https://doi.org/10.1007/s00217-016-2710-4

osteoblast proliferation activity. European Food Research and Technology 242(12): 2139–46.

Reddi S, Shanmugam V P, Tanedjeu K S, Kapila S and Kapila R. 2018. Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation. European Journal of Nutrition 57(2): 593–605. DOI: https://doi.org/10.1007/s00394-016-1346-2

Scalavino V, Liso M, Cavalcanti E, Gigante I, Lippolis A, Mastronardi M, Chieppa M and Serino G. 2020. miR-369–3p

modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response. Scientific

Reports 10(1): 1–10.

Shanmugam V P, Kapila S, Sonfack T K and Kapila R. 2015. Antioxidative peptide derived from enzymatic digestion of DOI: https://doi.org/10.1016/j.idairyj.2014.11.001

buffalo casein. International Dairy Journal 42: 1–5.

Smieszek A, Marcinkowska K, Pielok A, Sikora M, Valihrach L and Marycz K. 2020. The role of miR-21 in Osteoblasts–

Osteoclasts Coupling in vitro. Cells 9(2): 479.

Taylor S E, Shah M and Orriss I R. 2014. Generation of rodent and human osteoblasts. BoneKey Reports 3: 585. DOI: https://doi.org/10.1038/bonekey.2014.80

Tran T H and Montano M A. 2017. MicroRNAs: Mirrors of Health and Disease. Translating MicroRNAs to the Clinic, 1–15. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-800553-8.00001-9

Upadhyay D, Kaur T, Kapila R and Kapila S. 2020. Repertoire of structure–activity-based novel modified peptides elicits enhanced osteogenic potential. Journal of Agricultural and Food Chemistry 68(31): 8308–20. DOI: https://doi.org/10.1021/acs.jafc.0c03385

Vij R. 2017. ‘MicroRNA Delineation During Osteoblast Differentiation Induced by Milk Derived Peptide’. PhD Thesis, National Dairy Research Institute, Karnal, Haryana.

Vij R, Reddi S, Kapila S and Kapila R. 2016. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food DOI: https://doi.org/10.1016/j.foodchem.2015.05.121

Chemistry 190: 681–88.

Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C, Ji F and Tang H. 2020. miR-143 promotes angiogenesis and osteoblast

differentiation by targeting HDAC7. Cell Death and Disease 11(3): 1–15.

Woods A, Bresalier M, Cassidy A and Mason Dentinger R. 2017. Animals and the shaping of modern medicine: One health and its histories, Springer Nature 90 pp. DOI: https://doi.org/10.1007/978-3-319-64337-3

Xiaoling G, Shuaibin L and Kailu L. 2020. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Medical Genetics 21(1): 1–8. DOI: https://doi.org/10.1186/s12881-020-0948-y

Yang F, Huang R, Ma H, Zhao X and Wang G. 2020. miRNA-411 regulates chondrocyte autophagy in osteoarthritis by targeting hypoxia-inducible factor 1 alpha (HIF-1). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 26: 921155-1-921155-7. DOI: https://doi.org/10.12659/MSM.921155

Downloads

Submitted

2021-09-24

Published

2021-09-24

Issue

Section

Articles

How to Cite

KAUR, T., UPADHYAY, D., VIJ, R., KAPILA, R., & KAPILA, S. (2021). Milk peptide induced miRNA-369 facilitates bone functions in the rat osteoblasts. The Indian Journal of Animal Sciences, 91(8), 636–643. https://doi.org/10.56093/ijans.v91i8.115921
Citation