Evaluation of Bone Morphogenetic Protein-4 gene polymorphism for growth traits in Indian goat breeds

Abstract views: 52 / PDF downloads: 38


  • VAISHALI KHARE Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482 001 India
  • SHRIKANT JOSHI Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482 001 India
  • MOHAN SINGH THAKUR Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482 001 India
  • AJIT PRATAP SINGH Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482 001 India
  • RAJESH VANDRE Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482 001 India



BMP-4, Goat, Growth traits, PCR-SSCP


The genetic improvement of production traits can be made through marker assisted selection using a candidate
gene approach. Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the
transforming growth factor b (TGF-b) superfamily. This study aimed to detect the genetic polymorphism of BMP-4
in different goat breeds by polymerase chain reaction-single strand confirmational polymorphism (PCR-SSCP) and
association of polymorphic variants with growth traits. The amplified fragments of BMP4 gene of 380 bp size were
analysed using SSCP in non-denaturing PAGE and the results showed the presence of two genotypes: AA (47-
67%) and BB (33-53%) in Barbari, Sirohi and Black Bengal breed. The association of BMP-4 polymorphism with
different growth trait parameters showed non-significant effect of genotypes. However, some genotypes showed
non-significant superiority over others. Further research on a large population is required to validate the role of the
BMP-4 gene in goat growth traits.


Download data is not yet available.


Ariyarathne H B P C, Lokugalappatti L G S, Ariyaratne H B S and Munasinghe D M S. 2016. Detection of genetic diversity in four candidate genes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of goats in Sri Lanka. International Journal of Applied Science and Biotechnology 4(1): 133–38. DOI: https://doi.org/10.3126/ijasbt.v4i1.14517

Bellusci S, Henderson R, Winnier G and Oikawa T. 1996. Evidence from normal expression and targeted mis expression that bone morphogenetic protein (BMP-4) plays a role in mouse embryonic lung morphogenesis. Development 122: 1693–1702. DOI: https://doi.org/10.1242/dev.122.6.1693

Chu M X, Lu, L, Feng T, Di R, Cao G L, Wang, P Q, Fang L, Ma Y H and Li K. 2011. Polymorphism of bone morphogenetic protein 4 gene and its relationship with litter size of Jining Grey goats. Molecular Biology Reports 38(7): 4315–20. DOI: https://doi.org/10.1007/s11033-010-0556-6

Dietz M W and Drent R H. 1997. Effect of growth rate and body mass on resting metabolic rate in galliform chicks. Physiological Zoology 70(5): 493–501. DOI: https://doi.org/10.1086/515858

Ellenberger M A, Johnson D E, Carstens G E, Hossner K L, Holland M D, Nett T M and Nockels C F. 1989. Endocrine and metabolic changes during altered growth rates in beef cattle. Journal of Animal Science 67(6): 1446–54. DOI: https://doi.org/10.2527/jas1989.6761446x

Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T and Eckel J. 2014. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. American Journal of Physiology-Cell Physiology 306(5): C431–40. DOI: https://doi.org/10.1152/ajpcell.00290.2013

Fang X, Xu H, Chen H, Zhang C, Hu X and Gao X. 2010. Polymorphisms of bone morphogenetic protein 4 in goats. Journal of Animal and Veterinary Advances 9(5): 907–12. DOI: https://doi.org/10.3923/javaa.2010.907.912

Feng T, Zhao Y Z, Chu M X, Zhang Y J, Fang L, Di R, Cao G L and Li N. 2009. Association between sexual precocity and alleles of KiSS1 and GPR54 genes in goats. Animal Biotechnology 20: 172–16. DOI: https://doi.org/10.1080/10495390903004493

Graff J M. 1997. Embryonic patterning: To BMP or not to BMP, that is the question. Cell 89(2): 171–4. DOI: https://doi.org/10.1016/S0092-8674(00)80196-8

Graham M A, Francis-West P, Brickell P and Lumsden A. 1994. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372(6507): 684–6. DOI: https://doi.org/10.1038/372684a0

Hogan B L. 1996. Bone morphogenetic proteins in development. Current Opinion in Genetics and Development 6(4): 432–8. DOI: https://doi.org/10.1016/S0959-437X(96)80064-5

Ibrahim A H M. 2019. Association of growth performance and body conformational traits with BMP4 gene variation in Barki lambs. Growth Factors 87(2): 86–97. DOI: https://doi.org/10.1080/08977194.2019.1662417

John S W, Weitzner G, Rozen R and Scriver C R. 1991. A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Research 19(2): 408. DOI: https://doi.org/10.1093/nar/19.2.408

Lan X Y, Pan C Y, Chen H, Lei C Z, Hua L S, Yang X B, Qiu G Y, Zhang R F and Lun Y Z. 2007. Ddel polymorphism in coding region of goat POU1F1 gene and its association with production traits. Asian Australasian Journal of Animal Sciences 20(9): 1342–48. DOI: https://doi.org/10.5713/ajas.2007.1342

Missohou A, Talaki E and Mamam Laminon I. 2006. Diversity and genetic relationships among seven West African goat breeds. Asian Australian Journal of Animal Sciences 19(9): 1245–51. DOI: https://doi.org/10.5713/ajas.2006.1245

Rosenfeld J, Leeuwen T V, Richards J and Allen D. 2015. Relationship between growth and standard metabolic rate: Measurement artefacts and implications for habitat use and life-history adaptation in salmonids. The Journal of Animal Ecology 84(1): 4–20. DOI: https://doi.org/10.1111/1365-2656.12260

SPSS Statistical software Package for the Social Sciences, SPSS Inc., version 16, Chicago; 2007.

Sarma L, Nahardeka N, Zaman G, Aziz A, Das A, Akhtar F, Upadhyay S and Borkolita L. 2019. Analysis of BMP4 gene HaeIII polymorphism in Assam Hill goat. Journal of Entomology and Zoology Studies 7(2): 34–37.

Sharma R, Ahlawat S, Maitra A, Roy M, Mandakmale S and Tantia M S. 2013. Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy. Gene 532(1): 140–5. DOI: https://doi.org/10.1016/j.gene.2013.08.086

Shimasaki S, Zachow J R, Li D and Kim H. 1999. A functional bone morphogenetic protein system in the ovary. Proceedings of the National Academy of Sciences, USA 96(13): 7282–7. DOI: https://doi.org/10.1073/pnas.96.13.7282

Vainio S, Karavanova I, Jowett A and Thesleff I. 1993. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75(1): 45–58. DOI: https://doi.org/10.1016/S0092-8674(05)80083-2

Wozney J M, Rosen V, Celeste A J, Mitsock L M, Whitters M J and Kriz R W.1988. Novel regulators of bone formation: molecular clones and activities. Science 242(4885): 1528–34. DOI: https://doi.org/10.1126/science.3201241

Zhang X, Wang W, Mo F, La Y, Li C and Li F. 2017. Association of residual feed intake with growth and slaughtering performance, blood metabolism and body composition in growing lambs. Scientific Reports 7(1): 12681 DOI: https://doi.org/10.1038/s41598-017-13042-7






How to Cite

KHARE, V., JOSHI, S., THAKUR, M. S., SINGH, A. P., & VANDRE, R. (2022). Evaluation of Bone Morphogenetic Protein-4 gene polymorphism for growth traits in Indian goat breeds. The Indian Journal of Animal Sciences, 92(9), 1077–1080. https://doi.org/10.56093/ijans.v92i9.118883