Path coefficient analysis of haemato-biochemical traits to explore the heat stress in native Khadia chicken population of northern Odisha, India


Abstract views: 231 / PDF downloads: 93

Authors

  • A SAHOO Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751 003 India
  • G D NAYAK Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751 003 India
  • B C DAS Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751 003 India
  • K K SARDAR Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751 003 India

https://doi.org/10.56093/ijans.v92i2.122101

Keywords:

Direct effect, Heat stress, Khadia chicken, Path analysis, Regression

Abstract

The aim of the present study was to evaluate the haemato-biochemical parameters of native Khadia chicken reared under backyard poultry production system. Data were collected from 280 Khadia chicken population. The haemato-biochemical parameters were altered significantly due to heat stress. The stress related traits, viz. heart rate (447.68±4.50 beat/min) and cloacal temperature (46.32±0.12) were recorded. The correlation between heart rate and AST was 0.76 and the correlation with other haemato-biochemical parameters was also significant under stressful conditions. Similarly, cloacal temperature also significantly correlated with haemato-biochemical parameters under thermal stress. The path coefficient analysis was executed to identify the direct effect of AST on heart rate and cloacal temperature which were 0.57 and 0.46, respectively. The multiple regression analysis showed AST is the central factor contributing to variation in stress related traits which can be used as a selection tool for selection at early stage of birds for thermal tolerance.

Downloads

Download data is not yet available.

References

Abbas A, Khan M J, Naeem M, Ayaz M, Sufyan A and Somro M H. 2012. Cation anion balance in avian diet: A review. Agricultural Science Research Journal 2: 302–07.

Abbas A O, El-dein A A, Desoky A A and Galal M A. 2008. The effects of photoperiod programs on broiler chicken performance and immune response. International Journal of Poultry Science 7: 665–71. DOI: https://doi.org/10.3923/ijps.2008.665.671

Abd El-hack M E, Alagawany M, Mahrose K M, Arif M, Saeed M, Arain M A, Soomro R N, Siyal F A, Fazlani S A and Fowler J. 2018. Productive performance, egg quality, hematological parameters and serum chemistry of laying hens fed diets supplemented with certain fat-soluble vitamins individually or combined during summer season. Animal Nutrition. https://doi.org/10.1016/j.aninu.2018.04.008. DOI: https://doi.org/10.1016/j.aninu.2018.04.008

Adekunle M O, Abioja M O, Abiona J A, Jegede A V and Sodipe O G. 2017. Rectal temperature, heart rate, packed cell volume and differential white blood cell count of laying pullets to honey supplemented water during hot-dry season. Slovak Journal Animal Science 50(1): 15–20.

Aengwanich W. 2007. Effects of high environmental temperature on the productive performance of Thai indigenous, Thai indigenous crossbred and broiler chickens. International Journal of Poultry Science 6(5): 349–53. DOI: https://doi.org/10.3923/ijps.2007.349.353

Aini I. 1990. Indigenous chicken production in South-east Asia. World’s Poultry Science Journal 46(1): 51–57. DOI: https://doi.org/10.1079/WPS19900010

Akaboot P, Dungjinda M and Phasuk Y. 2010. Genetic comparison of functional genes in Red jungle fowl, Thai native chicken and commercial chicken. Proceeding of the 14th AAAP Animal Science Congress, pp. 23–27.

Al-Aqil and Zulkifli A. 2009. Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Poultry Science 88: 1358–64. DOI: https://doi.org/10.3382/ps.2008-00554

Ayo J O, Obidi J A and Rekwot P I. 2010. Seasonal variations in feed consumption, henday, mortality and culls of Bovans Black chickens. Proceedings of the 35th Annual Conference of the Nigerian Society for Animal Production. University of Ibadan, pp. 415–418.

Barik S, Swain R K, Sethyk, Mishra S K, Satapathy D, Panigrahy K K and Bidanta S. 2019. Comparative evaluation of blood biochemical and haematological parameters along with immune status of Vanaraja birds under different systems of rearing. International Journal of Current Microbiology and Applied Sciences 7: 872–78.

Barua A and Yoshimura Y. 1997. Rural poultry keeping in Bangladesh. World’s Poultry Science Journal 53(4): 387–94. DOI: https://doi.org/10.1079/WPS19970031

Boonkum W, Duangjinda M, Laopaiboon B and Vongpralub T. 2014. Effects of heat stress on genetic parameters and egg production in Pradu Hang Dam Thai native chickens. Khon Kaen Agriculture Journal 42: 319–28.

Bora S, Gurram S and Sagi R. 2017. Hematological and biochemical parameters of three indigenous chickens during summer season. International Journal of Livestock Research 7(9): 47–52. DOI: https://doi.org/10.5455/ijlr.20170716011557

Candido M G L and Tinoco I F F. 2020. Effects of heat stress on pullet cloacal and body temperature. Poultry Science 99(5): 2469–77. DOI: https://doi.org/10.1016/j.psj.2019.11.062

Cooper M A and Washburn K W. 1998. The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poultry Science 77: 237–42. DOI: https://doi.org/10.1093/ps/77.2.237

De Basilio V, Requena F, Leon A, Vilarino M and Picard M. 2003. Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment. Poultry Science 82: 1235–41. DOI: https://doi.org/10.1093/ps/82.8.1235

Dessie T, Dana N, Ayalew W and Hanotte O. 2012. Current state of knowledge on indigenous chicken genetic resources of the tropics: Domestication, distribution and documentation of information on the genetic resources. World’s Poultry Science 68(1): 11–20. DOI: https://doi.org/10.1017/S0043933912000025

Duah K K, Essuman E K, Boadu V G, Olympio O S and Akwetey W. 2020. Comparative study of indigenous chickens on the basis of their health and performance. Poultry Science 99: 2286–92. DOI: https://doi.org/10.1016/j.psj.2019.11.049

Dutta R K, Saiful Islam M and Ashraful Kabir M D. 2013. Haematological and biochemical profiles of Gallus indigenous, exotic and hybrid chicken breeds (Gallus domesticus) from Rajshahi, Bangladesh. Bangladesh Journal of Zoology 41(2): 135–44. DOI: https://doi.org/10.3329/bjz.v41i2.23314

Farag M R and Alagawany M. 2018. Physiological alterations of poultry to the high environmental temperature. Journal of Thermal Biology 76: 101–06. DOI: https://doi.org/10.1016/j.jtherbio.2018.07.012

Gaviol, Gasparino H C T, Prioli E and Soares Maria A J. 2008. Genetic evaluation of the HSP70 protein in the Japanese quail (Coturnix japonica). Genetics and Molecular Research 7(1): 133–39. DOI: https://doi.org/10.4238/vol7-1gmr354

He S, Li S, Arowolo M A, Yu Q, Chen F, Hu R and He J. 2019. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow feather broilers under heat stress. Animal Science Journal 90(3): 401–11. DOI: https://doi.org/10.1111/asj.13161

Huang S, Yang H, Rehman M U and Tong Z. 2018. Acute heat stress in broiler chickens and its impact on serum biochemical and electrolyte parameters. Indian Journal of Animal Research 52(5): 683–86. DOI: https://doi.org/10.18805/ijar.v0iOF.8490

IFCC. 1986a. Part 2: IFCC method for aspartate aminotransferase (EC 2.6.1.1). Google Scholar IFCC. 1986b. Part 3: IFCC method for alanine aminotransferase (EC 2.6.1.2). Google Scholar.

Ilan L, Osman F, Namer L S, Eliahu E, Cohen Chalamish S, Ben Asouli Y and Kaempfer R. 2017. PKR activation and eIF2 phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Research 27(5): 688–704. DOI: https://doi.org/10.1038/cr.2017.39

Islam M S, Lucky N S, Islam M R, Ahadi A, Das B R, Rahman M M and Siddini M S I. 2004. Haematological parameters of Fayoumi, Asil and local chickens reared in Sylhet region in Bangladesh. International Journal of Poultry Science 3:144– 47. DOI: https://doi.org/10.3923/ijps.2004.144.147

Iwama G K, Vijayan M M, Forsyth R B and Ackerman P A. 1999. Heat shock proteins and physiological stress in fish. American Zoology 39: 901–09. Jain N C. 1993. Essential of Veterinary Haematology. Lea and Febiger, Philadelphia, pp. 134–160. DOI: https://doi.org/10.1093/icb/39.6.901

Jaiswal S K, Raza M and Chaturvedani A K. 2017. Effect of thermal stress on serum biochemical and haematological parameters in broiler chicken. Indian Journal of Veterinary Sciences and Biotechnology 12(3): 19–22. DOI: https://doi.org/10.21887/ijvsbt.v12i3.7082

Kamboh AA, Hang S Q, Bakhetgul M and Zhu W Y. 2013. Effects of genistein and hesperidin on biomarkers of heat stress in broilers under persistent summer stress. Poultry Science 92: 2411–18. DOI: https://doi.org/10.3382/ps.2012-02960

Khan A G. 2008. Indigenous breeds, crossbreds and synthetic hybrids with modified genetic and economic profiles for rural family and small scale poultry farming in India. World’s Poultry Science Journal 64(3): 405–15. DOI: https://doi.org/10.1017/S0043933908000135

Khan W A, Khan A, Anjum A D and Rehman Z U. 2002. Effects of induced heat stress on some biochemical values in broiler chicks. International Journal of Agriculture and Biology 4(1): 74–75.

Ladokun A O, Yakubu A, Otite J R, Omeje J N, Sokunbi O A and Onyeji E. 2008. Haemtological and serum biochemical indices of naked neck and normally feathered Nigerian indigenous chickens in a sub-humid tropical environment. International Journal of Poultry Science 7: 55–58. DOI: https://doi.org/10.3923/ijps.2008.55.58

Lara L J and Rostagno M H. 2013. Impact of heat stress on poultry production. Animals (Basel) 3(2): 356–69. DOI: https://doi.org/10.3390/ani3020356

Maddheshiya P K, Ali N, Fahim A, Bharti M K, Singh R, Roy D and Sahu D S. 2020. Study of egg traits among improved varieties of chicken reared under backyard poultry production system. Indian Journal of Animal Sciences 90(6): 898–902.

Magothe T M, Okeno T O, Muhuyi W B and Kahi A K. 2012. Indigenous chicken production in Kenya: I. Current status. World’s Poultry Science Journal 68(1): 119–32. DOI: https://doi.org/10.1017/S0043933912000128

Magothe T M, Okeno T O, Muhuyi W B and Kahi A K. 2012. Indigenous chicken production in Kenya: II. Prospects for research and development. World’s Poultry Science Journal 68(1): 133–44. DOI: https://doi.org/10.1017/S004393391200013X

Mashaly M M, Hendricks G L, Kalama M A, Gehad A E, Abbas A O and Patterson P H. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poultry Science 83: 889–94. DOI: https://doi.org/10.1093/ps/83.6.889

Mohapatra S C and Panda B. 1981. Poultry genetic resources in India. Indian Poultry Industry Year Book, pp. 50–58.

Mosleh, Shomali N T, Nematollahi F, Ghahramani Z, Ahrari Khafi M S and Namazi F. 2018. Effect of different periods of chronic heat stress with or without vitamin C supplementation on bone and selected serum parameters of broiler chickens. Avian Pathology 47(2): 197–205. DOI: https://doi.org/10.1080/03079457.2017.1401212

Nascimento M and Martins J. 2017. Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina: Ciencias Agrarias 38: 1383. DOI: https://doi.org/10.5433/1679-0359.2017v38n3p1383

Nascimento S T, Da silva I J O, Mourao G B and de Castro A C. 2012. Bands of respiratory rate and CT for different broiler chicken strains. Revista Brasileira de Zootecnia 41(5): 1318– 24. DOI: https://doi.org/10.1590/S1516-35982012000500033

Nayak G D, Sardar K K and Das B C. 2020. Socio-economic condition of Khadia poultry farmers and phenotypic characteristics of Khadia chicken of Northern Odisha, India. International Journal of Current Microbiology and Applied Sciences 9(1): 1395–1404. DOI: https://doi.org/10.20546/ijcmas.2020.901.154

Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, Zhao Y, Nawab Y, Li K, Xiao M and An L. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology 78: 131–39. DOI: https://doi.org/10.1016/j.jtherbio.2018.08.010

Nienaber J A and Hahn G L. 2007. Livestock production system management responses to thermal challenges. International Journal of Biometeorology 52(2): 149–57. DOI: https://doi.org/10.1007/s00484-007-0103-x

Oguntunji O M and Alabi A O. 2010. Influence of high environmental temperature on egg production and shell quality, a review. World’s Poultry Science Journal 66 (4): 739–50. DOI: https://doi.org/10.1017/S004393391000070X

Padhi M K. 2016. Importance of Indigenous Breeds of Chicken for Rural Economy and Their Improvements for Higher Production Performance. Scientifica. Article ID 2604685, 9 pages http://dx.doi.org/10.1155/2016/2604685. DOI: https://doi.org/10.1155/2016/2604685

Parveen A, Khan S H, Khawaja T, Iftikhar N and Khan S. 2017. Growth performance and haemato-biochemical parameters of different breeds of rural chickens. Journal of World’s Poultry Research 7: 114–22.

Pollock C, Carpenter J W and Natalic A. 2001. Exotic Animal Formulary. Elsevier Sauders, pp. 273.

Ranjan A, Sinha R, Devi I, Rahim A and Tiwari S. 2019. Effect of heat stress on poultry production and their managemental approaches. International Journal of Current Microbiology and Applied Sciences 8(2): 1548–55. DOI: https://doi.org/10.20546/ijcmas.2019.802.181

Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine J L and Collier R J. 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5): 707– 28. DOI: https://doi.org/10.1017/S1751731111002448

Reta D. 2009. Understanding the role of indigenous chickens during the long walk to food security in Ethiopia. Livestock Researchfor Rural Development 21(8). http://www.lrrd.org/ lrrd21/8/dugu21116.htm

Saeed, Abbasc M G, Alagawanyd M, Kambohe A A, El-Hackd M E A, Khafagaf A F and Chaoa S. 2019. Heat stress management in poultry farms: A comprehensive overview. Journal of Thermal Biology 84: 414–25. DOI: https://doi.org/10.1016/j.jtherbio.2019.07.025

Saklani S, Singh G, Vij R and Sankhyan V. 2019. Blood biochemical values of native chicken of Himachal Pradesh, Dahlem Red and their crosses. International Journal of Livestock Research 9(10): 127–32. DOI: https://doi.org/10.5455/ijlr.20190719082925

Scanes C G. 2015. Sturkie’s Avian Physiology (Chapter 37) – Regulation of Body Temperature: Strategies and Mechanisms. Sixth edn. Academic Press USA, pp. 869–905. DOI: https://doi.org/10.1016/B978-0-12-407160-5.00037-3

Singh M K, Nayak G D and Sardar K K. 2016. Phenotypic characterization of native chicken populations reared under family-based free-range scavenging system in Odisha, India. Indian Journal of Animal Research 50(6): 839–45. DOI: https://doi.org/10.18805/ijar.v0i0f.3797

Singh R K and Chaudhary B D. 1985. Biometrical Method in Quantitative Genetics Analysis. Kalyani Publishers, New Delhi.

Smith F A, Brown J and Valone T J. 1997. Path analysis: A critical evaluation using long-term experimental data. American Naturalist 149: 29–42. DOI: https://doi.org/10.1086/285977

Snedecor G W and Cochran W G. 1989. Statistical Methods. 8th Edition. Iowa State University Press, Ames.

Yousaf A, Jabbar A and Ditta Y A. 2017. Effect of pre-warming on broiler breeder eggs hatchability and post-hatch performance. Journal of Animal Health and Production 5: 1–4. DOI: https://doi.org/10.14737/journal.jahp/2017/5.1.1.4

Zuidhof M J, Ouellette C A P, Korver D R and Renema R A. 2010. Broiler nutrition: Optimizing genotype × environment interactions. Proceedings of the Eastern Nutrition Conference, Guelph. 13.

Downloads

Submitted

2022-03-10

Published

2022-03-10

Issue

Section

Articles

How to Cite

SAHOO, A., NAYAK, G. D., DAS, B. C., & SARDAR, K. K. (2022). Path coefficient analysis of haemato-biochemical traits to explore the heat stress in native Khadia chicken population of northern Odisha, India. The Indian Journal of Animal Sciences, 92(2), 238-243. https://doi.org/10.56093/ijans.v92i2.122101
Citation